|
Эта публикация цитируется в 67 научных статьях (всего в 67 статьях)
Геометрические аспекты усреднения
С. М. Козлов
Аннотация:
Работа посвящена задачам приближенного вычисления усредненных характеристик для уравнений с частными производными. Для этой цели используется ряд методов,
учитывающих геометрию неоднородности коэффициентов. Рассматриваются упорядоченные, а также неупорядоченные – случайные – шахматные среды. Для решения таких задач дано обобщение метода перевала на вариационный
интеграл Лапласа. Установлено на ряде примеров, что требование экстремальности усредненных характеристик приводит к свойству упорядоченности.
Библиогр. 36 назв.
Поступила в редакцию: 14.03.1988
Образец цитирования:
С. М. Козлов, “Геометрические аспекты усреднения”, УМН, 44:2(266) (1989), 79–120; Russian Math. Surveys, 44:2 (1989), 91–144
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rm2274 https://www.mathnet.ru/rus/rm/v44/i2/p79
|
Статистика просмотров: |
Страница аннотации: | 882 | PDF русской версии: | 324 | PDF английской версии: | 38 | Список литературы: | 83 | Первая страница: | 1 |
|