Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2009, Volume 64, Issue 2, Pages 205–271
DOI: https://doi.org/10.1070/RM2009v064n02ABEH004615
(Mi rm9260)
 

This article is cited in 5 scientific papers (total in 6 papers)

Integral models of representations of the current groups of simple Lie groups

A. M. Vershika, M. I. Graevb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Scientific Research Institute for System Studies of RAS
References:
Abstract: For the class of locally compact groups $P$ that can be written as the semidirect product of a locally compact subgroup $P_0$ and a one-parameter group $\mathbb R^*_+$ of automorphisms of $P_0$, a new model of representations of the current groups $P^X$ is constructed. The construction is applied to the maximal parabolic subgroups of all simple groups of rank 1. In the case of the groups $G=\mathrm{SO}(n,1)$ and $G=\mathrm{SU}(n,1)$, an extension is constructed of representations of the current groups of their maximal parabolic subgroups to representations of the current groups $G^X$. The key role in the construction is played by a certain $\sigma$-finite measure (the infinite-dimensional Lebesgue measure) in the space of distributions.
Bibliography: 32 titles.
Keywords: current group, integral model, Fock representation, canonical representation, special representation, infinite-dimensional Lebesgue measure.
Received: 24.12.2008
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: Primary 22E65, 22E46, 22D12; Secondary 58D20
Language: English
Original paper language: Russian
Citation: A. M. Vershik, M. I. Graev, “Integral models of representations of the current groups of simple Lie groups”, Russian Math. Surveys, 64:2 (2009), 205–271
Citation in format AMSBIB
\Bibitem{VerGra09}
\by A.~M.~Vershik, M.~I.~Graev
\paper Integral models of representations of the current groups of simple Lie groups
\jour Russian Math. Surveys
\yr 2009
\vol 64
\issue 2
\pages 205--271
\mathnet{http://mi.mathnet.ru/eng/rm9260}
\crossref{https://doi.org/10.1070/RM2009v064n02ABEH004615}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2530917}
\zmath{https://zbmath.org/?q=an:05636137}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009RuMaS..64..205V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270371400001}
\elib{https://elibrary.ru/item.asp?id=20359379}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-72849133255}
Linking options:
  • https://www.mathnet.ru/eng/rm9260
  • https://doi.org/10.1070/RM2009v064n02ABEH004615
  • https://www.mathnet.ru/eng/rm/v64/i2/p5
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1225
    Russian version PDF:341
    English version PDF:44
    References:128
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025