Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2012, Volume 67, Issue 4, Pages 685–719
DOI: https://doi.org/10.1070/RM2012v067n04ABEH004804
(Mi rm9492)
 

This article is cited in 28 scientific papers (total in 28 papers)

Schubert calculus and Gelfand–Zetlin polytopes

V. A. Kirichenkoab, E. Yu. Smirnovcb, V. A. Timorindb

a Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
b National Research University Higher School of Economics
c Laboratoire J.-V. Poncelet (UMI 2615 du CNRS)
d Independent University of Moscow
References:
Abstract: A new approach is described to the Schubert calculus on complete flag varieties, using the volume polynomial associated with Gelfand–Zetlin polytopes. This approach makes it possible to compute the intersection products of Schubert cycles by intersecting faces of a polytope.
Bibliography: 23 titles.
Keywords: Flag variety, Schubert calculus, Gelfand–Zetlin polytope, volume polynomial.
Received: 25.05.2012
Bibliographic databases:
Document Type: Article
UDC: 512.734
MSC: Primary 14L30; Secondary 52B20, 14M15, 14N15
Language: English
Original paper language: Russian
Citation: V. A. Kirichenko, E. Yu. Smirnov, V. A. Timorin, “Schubert calculus and Gelfand–Zetlin polytopes”, Russian Math. Surveys, 67:4 (2012), 685–719
Citation in format AMSBIB
\Bibitem{KirSmiTim12}
\by V.~A.~Kirichenko, E.~Yu.~Smirnov, V.~A.~Timorin
\paper Schubert calculus and Gelfand--Zetlin polytopes
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 4
\pages 685--719
\mathnet{http://mi.mathnet.ru//eng/rm9492}
\crossref{https://doi.org/10.1070/RM2012v067n04ABEH004804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013846}
\zmath{https://zbmath.org/?q=an:1258.14055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310789000002}
\elib{https://elibrary.ru/item.asp?id=20423457}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868625760}
Linking options:
  • https://www.mathnet.ru/eng/rm9492
  • https://doi.org/10.1070/RM2012v067n04ABEH004804
  • https://www.mathnet.ru/eng/rm/v67/i4/p89
  • Related presentations:
    This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1342
    Russian version PDF:598
    English version PDF:26
    References:95
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024