Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 2, Pages 199–226
DOI: https://doi.org/10.1070/RM2013v068n02ABEH004828
(Mi rm9512)
 

This article is cited in 17 scientific papers (total in 17 papers)

Counterexamples to regularity of Mañé projections in the theory of attractors

A. Edena, S. V. Zelikb, V. K. Kalantarovc

a Bogazici University, Bebek, Istanbul, Turkey
b University of Surrey, Guildford, UK
c Koç University, Istanbul, Turkey
References:
Abstract: This paper is a study of global attractors of abstract semilinear parabolic equations and their embeddings in finite-dimensional manifolds. As is well known, a sufficient condition for the existence of smooth (at least $C^1$-smooth) finite-dimensional inertial manifolds containing a global attractor is the so-called spectral gap condition for the corresponding linear operator. There are also a number of examples showing that if there is no gap in the spectrum, then a $C^1$-smooth inertial manifold may not exist. On the other hand, since an attractor usually has finite fractal dimension, by Mañé's theorem it projects bijectively and Hölder-homeomorphically into a finite-dimensional generic plane if its dimension is large enough. It is shown here that if there are no gaps in the spectrum, then there exist attractors that cannot be embedded in any Lipschitz or even log-Lipschitz finite-dimensional manifold. Thus, if there are no gaps in the spectrum, then in the general case the inverse Mañé projection of the attractor cannot be expected to be Lipschitz or log-Lipschitz. Furthermore, examples of attractors with finite Hausdorff and infinite fractal dimension are constructed in the class of non-linearities of finite smoothness.
Bibliography: 35 titles.
Keywords: global attractors, inertial manifolds, Mañé projections, regularity.
Received: 06.02.2013
Bibliographic databases:
Document Type: Article
UDC: 517.956
MSC: Primary 35B41; Secondary 35B40, 35B42, 35B45, 35K90, 37L25
Language: English
Original paper language: Russian
Citation: A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226
Citation in format AMSBIB
\Bibitem{EdeZelKal13}
\by A.~Eden, S.~V.~Zelik, V.~K.~Kalantarov
\paper Counterexamples to regularity of Ma\~n\'e projections in the theory of attractors
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 2
\pages 199--226
\mathnet{http://mi.mathnet.ru/eng/rm9512}
\crossref{https://doi.org/10.1070/RM2013v068n02ABEH004828}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113977}
\zmath{https://zbmath.org/?q=an:06196293}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..199E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320927900001}
\elib{https://elibrary.ru/item.asp?id=20423486}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880315364}
Linking options:
  • https://www.mathnet.ru/eng/rm9512
  • https://doi.org/10.1070/RM2013v068n02ABEH004828
  • https://www.mathnet.ru/eng/rm/v68/i2/p3
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1013
    Russian version PDF:233
    English version PDF:33
    References:93
    First page:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025