Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 293–333 (Mi semr108)  

This article is cited in 17 scientific papers (total in 18 papers)

Research papers

The Wickstead Problem

A. E. Gutmana, A. G. Kusraevb, S. S. Kutateladzea

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Institute of Applied Mathematics and Informatics, Vladikavkaz, Russia
References:
Abstract: In 1977 Anthony Wickstead raised the question of the conditions for all band preserving linear operators to be order bounded in a vector lattice. This article overviews the main ideas and results on the Wickstead problem and its variations, focusing primarily on the case of band preserving operators in a universally complete vector lattice.
Keywords: Band preserving operator, universally complete vector lattice, $\sigma$-distributive Boolean algebra, local Hamel basis, transcendence basis, derivation, Boolean valued representation.
Received February 13, 2008, published July 1, 2008
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: English
Citation: A. E. Gutman, A. G. Kusraev, S. S. Kutateladze, “The Wickstead Problem”, Sib. Èlektron. Mat. Izv., 5 (2008), 293–333
Citation in format AMSBIB
\Bibitem{GutKusKut08}
\by A.~E.~Gutman, A.~G.~Kusraev, S.~S.~Kutateladze
\paper The Wickstead Problem
\jour Sib. \`Elektron. Mat. Izv.
\yr 2008
\vol 5
\pages 293--333
\mathnet{http://mi.mathnet.ru/semr108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586639}
Linking options:
  • https://www.mathnet.ru/eng/semr108
  • https://www.mathnet.ru/eng/semr/v5/p293
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:565
    Full-text PDF :189
    References:96
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024