Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 448–455 (Mi semr119)  

This article is cited in 2 scientific papers (total in 2 papers)

Reviews

The Carleman formula for the Maxwell’s equations on a plane

È. V. Arbuzova, A. L. Bukhgeimab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Wichita State University, Department of Mathematics and Statiatics
Full-text PDF (767 kB) Citations (2)
References:
Abstract: We consider the Cauchy problem for second-order elliptic equations in an arbitrary bounded planar domain with Cauchy data only on a part of the boundary of the domain. We derive a Carleman-type formula for a solution to this problem and give a conditional stability estimate. Then the result is applied to Maxwell's system.
Keywords: Cauchy problem, second-order elliptic equations, Carleman formula, Maxwell's system.
Received July 1, 2008, published November 24, 2008
Bibliographic databases:
Document Type: Article
UDC: 517.55
MSC: 35J25
Language: Russian
Citation: È. V. Arbuzov, A. L. Bukhgeim, “The Carleman formula for the Maxwell’s equations on a plane”, Sib. Èlektron. Mat. Izv., 5 (2008), 448–455
Citation in format AMSBIB
\Bibitem{ArbBuk08}
\by \`E.~V.~Arbuzov, A.~L.~Bukhgeim
\paper The Carleman formula for the Maxwell’s equations on a~plane
\jour Sib. \`Elektron. Mat. Izv.
\yr 2008
\vol 5
\pages 448--455
\mathnet{http://mi.mathnet.ru/semr119}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586649}
Linking options:
  • https://www.mathnet.ru/eng/semr119
  • https://www.mathnet.ru/eng/semr/v5/p448
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :108
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025