|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Дискретная математика и математическая кибернетика
Connections between quaternary and Boolean bent functions
N. N. Tokarevaa, A. S. Shaporenkob, P. Soléc a Sobolev Institute of Mathematics, 4, Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
c I2M, CNRS, Aix-Marseille University, Centrale Marseille, Marseilles, France
Аннотация:
Boolean bent functions were introduced by Rothaus (1976) as combinatorial objects related to difference sets, and have since enjoyed a great popularity in symmetric cryptography and low correlation sequence design. In this paper connections between classical Boolean bent functions, generalized Boolean bent functions and quaternary bent functions are studied. We also study Gray images of bent functions and notions of generalized nonlinearity for functions that are relevant to generalized linear cryptanalysis.
Ключевые слова:
Boolean functions, generalized Boolean functions, quaternary functions, bent functions, semi bent functions, nonlinearity, linear cryptanalysis, Gray map, $\mathbb{Z}_4$-linear codes.
Поступила 5 октября 2020 г., опубликована 26 мая 2021 г.
Образец цитирования:
N. N. Tokareva, A. S. Shaporenko, P. Solé, “Connections between quaternary and Boolean bent functions”, Сиб. электрон. матем. изв., 18:1 (2021), 561–578
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1381 https://www.mathnet.ru/rus/semr/v18/i1/p561
|
Статистика просмотров: |
Страница аннотации: | 263 | PDF полного текста: | 85 | Список литературы: | 19 |
|