Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2023, Volume 20, Issue 2, Pages 1430–1442
DOI: https://doi.org/doi.org/10.33048/semi.2023.20.088
(Mi semr1651)
 

Real, complex and functional analysis

Stability condition and Riesz bounds for exponential splines

E. V. Mishchenko

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: Stability of the family of integer translations of exponential spline $U_{m,p}$ for arbitrary $m,p$ is proven; Riesz bounds are determined. The method presented in the paper allows to calculate Riesz bounds for the convolution of a B-spline of an arbitrary order and a function with an appropriated Fourier transform.
Keywords: E-spline, Riesz basis, Riesz bounds, functional series.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0008
The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0008).
Received January 16, 2023, published December 12, 2023
Document Type: Article
UDC: 517.518.34, 517.521.1
MSC: 46B15, 40A30
Language: Russian
Citation: E. V. Mishchenko, “Stability condition and Riesz bounds for exponential splines”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1430–1442
Citation in format AMSBIB
\Bibitem{Mis23}
\by E.~V.~Mishchenko
\paper Stability condition and Riesz bounds for exponential splines
\jour Sib. \`Elektron. Mat. Izv.
\yr 2023
\vol 20
\issue 2
\pages 1430--1442
\mathnet{http://mi.mathnet.ru/semr1651}
\crossref{https://doi.org/doi.org/10.33048/semi.2023.20.088}
Linking options:
  • https://www.mathnet.ru/eng/semr1651
  • https://www.mathnet.ru/eng/semr/v20/i2/p1430
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:22
    Full-text PDF :4
    References:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024