|
Дифференциальные уравнения, динамические системы и оптимальное управление
Equilibrium problem for a Kirchhoff–Love plate contacting with the lateral surface along a strip of a given width
N. P. Lazarev, D. Y. Nikiforov, G. M. Semenova North-Eastern Federal University, Kulakovsky str., 48, 677000, Yakutsk, Russia
Аннотация:
A new model of a Kirchhoff–Love plate is justified, which may come into contact by its lateral surface with a non-deformable obstacle along a strip of a given width. The non-deformable obstacle restricts displacements of the plate along the outer lateral surface. The obstacle is specified by a cylindrical surface, the generatrices of which are perpendicular to the midplane of the plate. A problem is formulated in variational form. A set of admissible displacements is determined in a suitable Sobolev space in the framework of a clamping condition and a non-penetration condition of the Signorini type. The non-penetration condition is given as a system of two inequalities. The existence and uniqueness of a solution to the problem is proven. An equivalent differential formulation and optimality conditions are found under the assumption of additional regularity of the solution to the variational problem. A qualitative connection has been established between the proposed model and a previously studied problem in which the plate is in contact over the entire lateral surface.
Ключевые слова:
contact problem, limit passage, variational inequality, nonpenetration condition.
Поступила 8 апреля 2024 г., опубликована 21 октября 2024 г.
Образец цитирования:
N. P. Lazarev, D. Y. Nikiforov, G. M. Semenova, “Equilibrium problem for a Kirchhoff–Love plate contacting with the lateral surface along a strip of a given width”, Сиб. электрон. матем. изв., 21:2 (2024), 729–740
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1712 https://www.mathnet.ru/rus/semr/v21/i2/p729
|
Статистика просмотров: |
Страница аннотации: | 56 | PDF полного текста: | 15 |
|