Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 500–507
DOI: https://doi.org/10.17377/semi.2015.12.042
(Mi semr605)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

Complexity functions of some Leibniz–Poisson algebras

S. M. Ratseeva, O. I. Cherevatenkob

a Ulyanovsk State University, Lev Tolstoy, 42, 432017, Ulyanovsk, Russia
b Ulyanovsk State I.N.Ulyanov Pedagogical University, Ploshchad' 100-letiya so dnya rozhdeniya V.I. Lenina, 4, 432700, Ulyanovsk, Russia
Full-text PDF (160 kB) Citations (1)
References:
Abstract: Leibniz–Poisson algebras are generalizations of Poisson algebras. Let $\{c_n(\mathbf{V})\}_{n\geq 0}$ and $\{\gamma_n(\mathbf{V})\}_{n\geq 2}$ are respectively sequences of codimensions and proper codimensions of varieties of Leibniz-Poisson algebras $\mathbf{V}$. We study the exponential generating functions $\mathcal{C}(\mathbf{V},z)=\sum_{n=0}^{\infty}c_n(\mathbf{V})z^n/n!$ and $\mathcal{C}^{p}(\mathbf{V},z)=\sum_{n=2}^{\infty}\gamma_n(\mathbf{V})z^n/n!$. The functions $\mathcal{C}(\mathbf{V},z)$ are used in the study of Lie algebras and associative algebras. In this paper we study numerical characteristics of varieties of Leibniz–Poisson algebras $\mathbf{V}_s$ defined by the identities
$$ \{ x_1, x_2 \} \cdot \{x_3, x_4 \} =0, ~\{x_0,\{x_1,x_2\},\ldots ,\{x_{2s-1},x_{2s}\}\}=0 $$
and of varieties of Leibniz–Poisson algebras $\mathbf{W}_s$ defined by the identities
$$ \{ x_1, x_2 \} \cdot \{x_3, x_4 \} =0, ~\{\{x_1,x_2\},\ldots ,\{x_{2s+1},x_{2s+2}\}\}=0, ~s\geq 1. $$
For each of the variety $\mathbf{V}_s$ and $\mathbf{W}_s$ an algebra-carrier is found and a basis of $n$-th proper polylinear space is built. We found exact formulas for the exponential generating functions for the codimension sequences and for the proper codimension sequences and exact formulas for codimension and proper codimension. Also a series of varieties of Leibniz–Poisson algebras, which codimension sequences asymptotically grow as polynomials of degree $k$, $k \geq 2 $, is given.
Keywords: Poisson algebra, Leibniz–Poisson algebra, variety of algebras, growth of variety.
Received June 12, 2015, published September 10, 2015
Document Type: Article
UDC: 512.572
MSC: 17B63
Language: Russian
Citation: S. M. Ratseev, O. I. Cherevatenko, “Complexity functions of some Leibniz–Poisson algebras”, Sib. Èlektron. Mat. Izv., 12 (2015), 500–507
Citation in format AMSBIB
\Bibitem{RatChe15}
\by S.~M.~Ratseev, O.~I.~Cherevatenko
\paper Complexity functions of some Leibniz--Poisson algebras
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 500--507
\mathnet{http://mi.mathnet.ru/semr605}
\crossref{https://doi.org/10.17377/semi.2015.12.042}
Linking options:
  • https://www.mathnet.ru/eng/semr605
  • https://www.mathnet.ru/eng/semr/v12/p500
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :46
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024