|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematical logic, algebra and number theory
Complexity functions of some Leibniz–Poisson algebras
S. M. Ratseeva, O. I. Cherevatenkob a Ulyanovsk State University, Lev Tolstoy, 42, 432017, Ulyanovsk, Russia
b Ulyanovsk State I.N.Ulyanov Pedagogical University, Ploshchad' 100-letiya so dnya rozhdeniya V.I. Lenina, 4, 432700, Ulyanovsk, Russia
Abstract:
Leibniz–Poisson algebras are
generalizations of Poisson algebras. Let $\{c_n(\mathbf{V})\}_{n\geq
0}$ and $\{\gamma_n(\mathbf{V})\}_{n\geq 2}$ are respectively sequences
of codimensions and proper codimensions of varieties of
Leibniz-Poisson algebras $\mathbf{V}$. We study the exponential
generating functions $\mathcal{C}(\mathbf{V},z)=\sum_{n=0}^{\infty}c_n(\mathbf{V})z^n/n!$ and
$\mathcal{C}^{p}(\mathbf{V},z)=\sum_{n=2}^{\infty}\gamma_n(\mathbf{V})z^n/n!$. The functions
$\mathcal{C}(\mathbf{V},z)$ are used in the study of Lie
algebras and associative algebras. In this paper we study numerical
characteristics of varieties of Leibniz–Poisson algebras $\mathbf{V}_s$
defined by the identities
$$
\{ x_1, x_2 \} \cdot \{x_3, x_4 \} =0, ~\{x_0,\{x_1,x_2\},\ldots ,\{x_{2s-1},x_{2s}\}\}=0
$$
and of varieties of Leibniz–Poisson algebras $\mathbf{W}_s$ defined by the identities
$$
\{ x_1, x_2 \} \cdot \{x_3, x_4 \} =0, ~\{\{x_1,x_2\},\ldots ,\{x_{2s+1},x_{2s+2}\}\}=0, ~s\geq 1.
$$
For each of the variety $\mathbf{V}_s$ and $\mathbf{W}_s$ an algebra-carrier is found and a basis of $n$-th proper polylinear space is built. We found exact formulas for the exponential generating functions for the codimension sequences and for the proper codimension sequences and exact formulas for codimension and proper codimension. Also a series of varieties of Leibniz–Poisson algebras, which codimension sequences asymptotically grow as polynomials of degree $k$, $k \geq 2 $, is given.
Keywords:
Poisson algebra, Leibniz–Poisson algebra, variety of algebras, growth of variety.
Received June 12, 2015, published September 10, 2015
Citation:
S. M. Ratseev, O. I. Cherevatenko, “Complexity functions of some Leibniz–Poisson algebras”, Sib. Èlektron. Mat. Izv., 12 (2015), 500–507
Linking options:
https://www.mathnet.ru/eng/semr605 https://www.mathnet.ru/eng/semr/v12/p500
|
Statistics & downloads: |
Abstract page: | 249 | Full-text PDF : | 46 | References: | 51 |
|