Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 151–176 (Mi semr96)  

This article is cited in 6 scientific papers (total in 6 papers)

Research papers

Orthogonal systems in finite graphs

A. J. Duncana, I. V. Kazachkovb, V. N. Remeslennikovc

a School of Mathematics and Statistics, University of Newcastle, Newcastle upon Tyne
b Department of Mathematics and Statistics, McGill University
c Omsk Branch of Mathematical Institute SB RAS
Full-text PDF (350 kB) Citations (6)
References:
Abstract: To a finite graph there corresponds a free partially commutative group: with the given graph as commutation graph. In this paper we construct an orthogonality theory for graphs and their corresponding free partially commutative groups. The theory developed here provides tools for the study of the structure of partially commutative groups, their universal theory and automorphism groups. In particular the theory is applied in this paper to the centraliser lattice of such groups.
Received March 1, 2008, published March 31, 2008
Bibliographic databases:
Document Type: Article
UDC: 512.54, 519.17
MSC: 05C25, 20E15
Language: English
Citation: A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, “Orthogonal systems in finite graphs”, Sib. Èlektron. Mat. Izv., 5 (2008), 151–176
Citation in format AMSBIB
\Bibitem{DunKazRem08}
\by A.~J.~Duncan, I.~V.~Kazachkov, V.~N.~Remeslennikov
\paper Orthogonal systems in finite graphs
\jour Sib. \`Elektron. Mat. Izv.
\yr 2008
\vol 5
\pages 151--176
\mathnet{http://mi.mathnet.ru/semr96}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586627}
Linking options:
  • https://www.mathnet.ru/eng/semr96
  • https://www.mathnet.ru/eng/semr/v5/p151
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :89
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024