Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2020, том 16, 071, 61 стр.
DOI: https://doi.org/10.3842/SIGMA.2020.071
(Mi sigma1608)
 

Эта публикация цитируется в 16 научных статьях (всего в 16 статьях)

Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov–Kaplansky Conjecture

Alexei  Kanel-Belova, Sergey Malevb, Louis Rowenc, Roman Yavichb

a Bar-Ilan University, MIPT, Israel
b Department of Mathematics, Ariel University of Samaria, Ariel, Israel
c Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
Список литературы:
Аннотация: Let $p$ be a polynomial in several non-commuting variables with coefficients in a field $K$ of arbitrary characteristic. It has been conjectured that for any $n$, for $p$ multilinear, the image of $p$ evaluated on the set $M_n(K)$ of $n$ by $n$ matrices is either zero, or the set of scalar matrices, or the set ${\rm sl}_n(K)$ of matrices of trace 0, or all of $M_n(K)$. This expository paper describes research on this problem and related areas. We discuss the solution of this conjecture for $n=2$ in Section 2, some decisive results for $n=3$ in Section 3, and partial information for $n\geq 3$ in Section 4, also for non-multilinear polynomials. In addition we consider the case of $K$ not algebraically closed, and polynomials evaluated on other finite dimensional simple algebras (in particular the algebra of the quaternions). This review recollects results and technical material of our previous papers, as well as new results of other researches, and applies them in a new context. This article also explains the role of the Deligne trick, which is related to some nonassociative cases in new situations, underlying our earlier, more straightforward approach. We pose some problems for future generalizations and point out possible generalizations in the present state of art, and in the other hand providing counterexamples showing the boundaries of generalizations.
Ключевые слова: L'vov–Kaplansky conjecture, noncommutative polynomials, multilinear polynomial evaluations, power central polynomials, the Deligne trick, PI algebras.
Финансовая поддержка Номер гранта
Israel Science Foundation 1994/20
Российский научный фонд 17-11-01377
Israel Innovation Authority 63412
The second and third named authors were supported by the ISF (Israel Science Foundation) grant 1994/20. The first named author was supported by the Russian Science Foundation grant No. 17-11-01377. The second and fourth named authors were supported by Israel Innovation Authority, grant no. 63412: Development of A.I. based platform for e commerce.
Поступила: 18 сентября 2019 г.; в окончательном варианте 8 июля 2020 г.; опубликована 27 июля 2020 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Alexei  Kanel-Belov, Sergey Malev, Louis Rowen, Roman Yavich, “Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov–Kaplansky Conjecture”, SIGMA, 16 (2020), 071, 61 pp.
Цитирование в формате AMSBIB
\RBibitem{KanMalRow20}
\by Alexei~~Kanel-Belov, Sergey~Malev, Louis~Rowen, Roman~Yavich
\paper Evaluations of Noncommutative Polynomials on Algebras: Methods and Problems, and the L'vov--Kaplansky Conjecture
\jour SIGMA
\yr 2020
\vol 16
\papernumber 071
\totalpages 61
\mathnet{http://mi.mathnet.ru/sigma1608}
\crossref{https://doi.org/10.3842/SIGMA.2020.071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000554997000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090519578}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1608
  • https://www.mathnet.ru/rus/sigma/v16/p71
  • Эта публикация цитируется в следующих 16 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:170
    PDF полного текста:57
    Список литературы:15
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024