Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 053, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.053
(Mi sigma179)
 

This article is cited in 11 scientific papers (total in 11 papers)

Lie Symmetries and Criticality of Semilinear Differential Systems

Yuri Bozhkova, Enzo Mitidierib

a Departamento de Matemática Aplicada, Instituto de Matemática, Estatistica e Computação Científica, Universidade Estadual de Campinas - UNICAMP, C.P. 6065, 13083-970 - Campinas - SP, Brasil
b Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italia
References:
Abstract: We discuss the notion of criticality of semilinear differential equations and systems, its relations to scaling transformations and the Noether approach to Pokhozhaev's identities. For this purpose we propose a definition for criticality based on the S. Lie symmetry theory. We show that this definition is compatible with the well-known notion of critical exponent by considering various examples. We also review some related recent papers.
Keywords: Pokhozhaev identities; Noether identity; critical exponents.
Received: February 1, 2007; in final form March 20, 2007; Published online March 25, 2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yuri Bozhkov, Enzo Mitidieri, “Lie Symmetries and Criticality of Semilinear Differential Systems”, SIGMA, 3 (2007), 053, 17 pp.
Citation in format AMSBIB
\Bibitem{BozMit07}
\by Yuri Bozhkov, Enzo Mitidieri
\paper Lie Symmetries and Criticality of Semilinear Differential Systems
\jour SIGMA
\yr 2007
\vol 3
\papernumber 053
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma179}
\crossref{https://doi.org/10.3842/SIGMA.2007.053}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2299854}
\zmath{https://zbmath.org/?q=an:1142.35028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234674}
Linking options:
  • https://www.mathnet.ru/eng/sigma179
  • https://www.mathnet.ru/eng/sigma/v3/p53
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :78
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024