|
Lagrangian Surplusection Phenomena
Georgios Dimitroglou Rizella, Jonathan David Evansb a Department of Mathematics, Uppsala Universitet, Uppsala, Sweden
b Department of Mathematics and Statistics, Lancaster University, Bailrigg, UK
Аннотация:
Suppose you have a family of Lagrangian submanifolds $L_t$ and an auxiliary Lagrangian $K$. Suppose that $K$ intersects some of the $L_t$ more than the minimal number of times. Can you eliminate surplus intersection (surplusection) with all fibres by performing a Hamiltonian isotopy of $K$? Or will any Lagrangian isotopic to $K$ surplusect some of the fibres? We argue that in several important situations, surplusection cannot be eliminated, and that a better understanding of surplusection phenomena (better bounds and a clearer understanding of how the surplusection is distributed in the family) would help to tackle some outstanding problems in different areas, including Oh's conjecture on the volume-minimising property of the Clifford torus and the concurrent normals conjecture in convex geometry. We pose many open questions.
Ключевые слова:
symplectic geometry, Lagrangian intersections, Floer theory.
Поступила: 3 сентября 2024 г.; в окончательном варианте 23 ноября 2024 г.; опубликована 6 декабря 2024 г.
Образец цитирования:
Georgios Dimitroglou Rizell, Jonathan David Evans, “Lagrangian Surplusection Phenomena”, SIGMA, 20 (2024), 109, 13 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma2111 https://www.mathnet.ru/rus/sigma/v20/p109
|
Статистика просмотров: |
Страница аннотации: | 45 | PDF полного текста: | 17 | Список литературы: | 11 |
|