|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Two-Point Functions on Deformed Spacetime
Josip Trampetićab, Jiangyang Youb a Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),
Föhringer Ring 6, D-80805 München, Germany
b Rudjer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
Аннотация:
We present a review of the one-loop photon $(\Pi)$ and neutrino $(\Sigma)$ two-point functions in a covariant and deformed $\rm U(1)$ gauge-theory on the 4-dimensional noncommutative spaces, determined by a constant antisymmetric tensor $\theta^{\mu\nu}$, and by a parameter-space $(\kappa_f,\kappa_g)$, respectively. For the general fermion-photon $S_f(\kappa_f)$ and photon self-interaction $S_g(\kappa_g)$ the closed form results reveal two-point functions with all kind of pathological terms: the UV divergence, the quadratic UV/IR mixing terms as well as a logarithmic IR divergent term of the type $\ln(\mu^2(\theta p)^2)$. In addition, the photon-loop produces new tensor structures satisfying transversality condition by themselves. We show that the photon two-point function in the 4-dimensional Euclidean spacetime can be reduced to two finite terms by imposing a specific full rank of $\theta^{\mu\nu}$ and setting deformation parameters $(\kappa_f,\kappa_g)=(0,3)$. In this case the neutrino two-point function vanishes. Thus for a specific point $(0,3)$ in the parameter-space $(\kappa_f,\kappa_g)$, a covariant $\theta$-exact approach is able to produce a divergence-free result for the one-loop quantum corrections, having also both well-defined commutative limit and point-like limit of an extended object.
Ключевые слова:
non-commutative geometry; photon and neutrino physics; non-perturbative effects.
Поступила: 24 февраля 2014 г.; в окончательном варианте 19 мая 2014 г.; опубликована 29 мая 2014 г.
Образец цитирования:
Josip Trampetić, Jiangyang You, “Two-Point Functions on Deformed Spacetime”, SIGMA, 10 (2014), 054, 20 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma919 https://www.mathnet.ru/rus/sigma/v10/p54
|
Статистика просмотров: |
Страница аннотации: | 161 | PDF полного текста: | 40 | Список литературы: | 56 |
|