Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2004, Volume 7, Number 2, Pages 99–102 (Mi sjim365)  

Differential identities in the theory of inverse problems for kinetic equations

M. V. Neshchadim

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: For an arbitrary associative commutative ring $L$, we establish an identity of a certain type that relates arbitrary finite families of elements of the ring and its differential operators. When $L$ is an algebra of functions defined on a manifold $M$, and the differential operators are vector fields, one can derive from the identity established some known identities that can be used to prove uniqueness theorems in the theory of inverse problems for kinetic equations. In some cases, we are able to give necessary and sufficient conditions for the existence of the identity.
Received: 01.03.2004
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: M. V. Neshchadim, “Differential identities in the theory of inverse problems for kinetic equations”, Sib. Zh. Ind. Mat., 7:2 (2004), 99–102
Citation in format AMSBIB
\Bibitem{Nes04}
\by M.~V.~Neshchadim
\paper Differential identities in the theory of inverse problems for kinetic equations
\jour Sib. Zh. Ind. Mat.
\yr 2004
\vol 7
\issue 2
\pages 99--102
\mathnet{http://mi.mathnet.ru/sjim365}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2133937}
\zmath{https://zbmath.org/?q=an:1054.35138}
Linking options:
  • https://www.mathnet.ru/eng/sjim365
  • https://www.mathnet.ru/eng/sjim/v7/i2/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :125
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025