Аннотация:
Статья посвящена неравенствам типа Харди с дополнительными слагаемыми. Постоянная $\lambda(\Omega)$, стоящая перед дополнительным слагаемым, зависит от геометрии многомерной области $\Omega$ и числовых параметров задачи. Эту константу-функционал в литературе обычно называют константой Брезиса–Маркуса. Ф. Г. Авхадиев и К.-Й. Вирц в статье [1] выдвинули гипотезу, что среди всех $n$-мерных областей с заданным внутренним радиусом $\delta_0$ максимум наилучших констант Брезиса–Маркуса представляет собой $\lambda(B_n)$, где $B_n $ – $n$-мерный шар радиуса $\delta_0$. В настоящей статье мы улучшаем известные нижние оценки $\lambda(B_n)$ при $n=2$ и $n= 4,\dots,10$, что нас делает ближе к подтверждению этой гипотезы.
Библиография: 18 названий.
Ключевые слова:
неравенство Харди, внутренний радиус, функция расстояния, функция Бесселя, дополнительное слагаемое.