Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 52, Issue 1, Pages 91–114
DOI: https://doi.org/10.1070/SM1985v052n01ABEH002879
(Mi sm2042)
 

This article is cited in 10 scientific papers (total in 10 papers)

Long wave asymptotics of asolution of a hyperbolic system of equations

L. A. Kalyakin
References:
Abstract: The Cauchy problem is considered for a hyperbolic system of equations with a small parameter $\varepsilon$:
\begin{gather*} [\partial_t+\lambda_i(\xi,\tau)\partial_x]u_i=\varepsilon[A_i(U,\xi,\tau)\partial_xU+b_i(U,\xi,\tau)],\qquad t>0; \\ u_i(x,t,\varepsilon)|_{t=0}=\varphi_i(x,\xi),\quad x\in\mathbf R^1;\quad i=1,\dots,m;\quad\xi=\varepsilon x,\quad\tau=\varepsilon t. \end{gather*}
It is assumed that the initial vector $\Phi(x,\xi)=(\varphi_1,\dots,\varphi_m)$ has asymptotics
$$ \Phi(x,\xi)=\Phi^\pm(\xi)+O(x^{-N}),\qquad x\to\pm\infty,\quad\forall\,N,\quad\forall\,|\xi|\leqslant M_0. $$
A`complete asymptotic expansion of the solution $U(x,t,\varepsilon)$ as $\varepsilon\to0$ which is uniform in a large domain $0\leqslant|x|$, $t\leqslant O(\varepsilon^{-1})$ is constructed by the method of matching. Several subdomains are distinguished in which the expansion can be represented in the form of various series. The following pairs of variables are characteristic in these subdomains: $x$, $t$; $\xi$, $\tau$; $\sigma_\alpha$, $\tau$, $\alpha=1,\dots,m$; here $\sigma_\alpha=\varepsilon^{-1}\omega_\alpha(\xi,\tau)$, $\partial_\tau\omega_\alpha+\lambda_\alpha\partial_\xi\omega_\alpha=0$, and $\omega_\alpha(\xi,0)=\xi$.
Bibliography: 20 titles.
Received: 05.04.1983
Bibliographic databases:
UDC: 517.956
MSC: 35L45, 35B25
Language: English
Original paper language: Russian
Citation: L. A. Kalyakin, “Long wave asymptotics of asolution of a hyperbolic system of equations”, Math. USSR-Sb., 52:1 (1985), 91–114
Citation in format AMSBIB
\Bibitem{Kal84}
\by L.~A.~Kalyakin
\paper Long wave asymptotics of asolution of a~hyperbolic system of equations
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 1
\pages 91--114
\mathnet{http://mi.mathnet.ru/eng/sm2042}
\crossref{https://doi.org/10.1070/SM1985v052n01ABEH002879}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=743059}
\zmath{https://zbmath.org/?q=an:0599.35098|0566.35066}
Linking options:
  • https://www.mathnet.ru/eng/sm2042
  • https://doi.org/10.1070/SM1985v052n01ABEH002879
  • https://www.mathnet.ru/eng/sm/v166/i1/p96
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:484
    Russian version PDF:114
    English version PDF:27
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025