Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 5, Pages 629–653
DOI: https://doi.org/10.1070/SM2008v199n05ABEH003936
(Mi sm3841)
 

This article is cited in 17 scientific papers (total in 17 papers)

Non-linear approximation of continuous functions by the Faber-Schauder system

M. G. Grigoryan, A. A. Sargsyan

Yerevan State University
References:
Abstract: The existence of a function $f_0(x)\in C_{[0,1]}$ for which the greedy algorithm in the Faber-Schauder system is divergent in measure on $[0,1]$ is established. It is shown that for each $\varepsilon$, $0<\varepsilon<1$, there exists a measurable subset $E$ of $ [0,1]$ of measure $|E|>1-\varepsilon$ such that for each $f(x)\in C_{[0,1]}$ one can find a function $\widetilde f(x)\in C_{[0,1]}$ coinciding with $f(x)$ on $E$, whose greedy algorithm in the Faber-Schauder system converges uniformly on $[0,1]$.
Bibliography: 33 titles.
Received: 20.02.2007 and 20.02.2008
Russian version:
Matematicheskii Sbornik, 2008, Volume 199, Number 5, Pages 3–26
DOI: https://doi.org/10.4213/sm3841
Bibliographic databases:
UDC: 517.518.8+517.518.34
MSC: 42C20, 42A20
Language: English
Original paper language: Russian
Citation: M. G. Grigoryan, A. A. Sargsyan, “Non-linear approximation of continuous functions by the Faber-Schauder system”, Mat. Sb., 199:5 (2008), 3–26; Sb. Math., 199:5 (2008), 629–653
Citation in format AMSBIB
\Bibitem{GriSar08}
\by M.~G.~Grigoryan, A.~A.~Sargsyan
\paper Non-linear approximation of continuous functions
by the Faber-Schauder system
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 5
\pages 3--26
\mathnet{http://mi.mathnet.ru/sm3841}
\crossref{https://doi.org/10.4213/sm3841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2421802}
\zmath{https://zbmath.org/?q=an:1153.42014}
\elib{https://elibrary.ru/item.asp?id=20359325}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 5
\pages 629--653
\crossref{https://doi.org/10.1070/SM2008v199n05ABEH003936}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259031600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52149101780}
Linking options:
  • https://www.mathnet.ru/eng/sm3841
  • https://doi.org/10.1070/SM2008v199n05ABEH003936
  • https://www.mathnet.ru/eng/sm/v199/i5/p3
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:964
    Russian version PDF:272
    English version PDF:22
    References:105
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024