Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 10, Pages 1503–1532
DOI: https://doi.org/10.1070/SM2003v194n10ABEH000774
(Mi sm774)
 

This article is cited in 17 scientific papers (total in 17 papers)

On the $L^p_\mu$-strong property of orthonormal systems

M. G. Grigoryan

Yerevan State University
References:
Abstract: Let $\{\varphi_n(x)\}$ be a system of bounded functions complete and orthonormal in $L^2_{[0,1]}$ and assume that $\|\varphi_n\|_{p_0}\leqslant\mathrm{const}$, $n\geqslant 1$, for some $p_0>2$. Then the elements of the system can be rearranged so that the resulting system has the $L^p_\mu$-strong property: for each $\varepsilon>0$ there exists a (measurable) subset $E\subset[0,1]$ of measure $|E|>1-\varepsilon$ and a measurable function $\mu(x)$, $0<\mu(x)\leqslant 1$, $\mu(x)=1$ on $E$ such that for all $p>2$ and $f(x)\in L^p_\mu[0,1]$ one can find a function $g(x)\in L^1_{[0,1]}$ coinciding with $f(x)$ on $E$ such that its Fourier series in the system $\{\varphi_{\sigma(k)}(x)\}$ converges to $g(x)$ in the $L^p_\mu[0,1]$-norm and the sequence of Fourier coefficients of this function belongs to all spaces $l^q$, $q>2$.
Received: 24.10.2002
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 10, Pages 77–106
DOI: https://doi.org/10.4213/sm774
Bibliographic databases:
UDC: 517.51
MSC: 42C15, 42C20
Language: English
Original paper language: Russian
Citation: M. G. Grigoryan, “On the $L^p_\mu$-strong property of orthonormal systems”, Mat. Sb., 194:10 (2003), 77–106; Sb. Math., 194:10 (2003), 1503–1532
Citation in format AMSBIB
\Bibitem{Gri03}
\by M.~G.~Grigoryan
\paper On the $L^p_\mu$-strong property of orthonormal systems
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 10
\pages 77--106
\mathnet{http://mi.mathnet.ru/sm774}
\crossref{https://doi.org/10.4213/sm774}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2037516}
\zmath{https://zbmath.org/?q=an:1082.42015}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 10
\pages 1503--1532
\crossref{https://doi.org/10.1070/SM2003v194n10ABEH000774}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188170200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0742288540}
Linking options:
  • https://www.mathnet.ru/eng/sm774
  • https://doi.org/10.1070/SM2003v194n10ABEH000774
  • https://www.mathnet.ru/eng/sm/v194/i10/p77
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:722
    Russian version PDF:215
    English version PDF:12
    References:105
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024