Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 11, Pages 1624–1638
DOI: https://doi.org/10.1070/SM2013v204n11ABEH004352
(Mi sm8211)
 

This article is cited in 4 scientific papers (total in 4 papers)

Optimal control and Galois theory

M. I. Zelikin, D. D. Kiselev, L. V. Lokutsievskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: An important role is played in the solution of a class of optimal control problems by a certain special polynomial of degree $2(n-1)$ with integer coefficients. The linear independence of a family of $k$ roots of this polynomial over the field $\mathbb{Q}$ implies the existence of a solution of the original problem with optimal control in the form of an irrational winding of a $k$-dimensional Clifford torus, which is passed in finite time. In the paper, we prove that for $n\le15$ one can take an arbitrary positive integer not exceeding $[{n}/{2}]$ for $k$. The apparatus developed in the paper is applied to the systems of Chebyshev-Hermite polynomials and generalized Chebyshev-Laguerre polynomials. It is proved that for such polynomials of degree $2m$ every subsystem of $[(m+1)/2]$ roots with pairwise distinct squares is linearly independent over the field $\mathbb{Q}$.
Bibliography: 11 titles.
Keywords: Pontryagin's maximum principle, Lie algebra, dense winding, Galois group, orthogonal polynomials.
Received: 17.01.2013 and 09.04.2013
Bibliographic databases:
Document Type: Article
UDC: 512.623.3+517.587+517.977.57
MSC: Primary 49J21; Secondary 49J15, 49K21
Language: English
Original paper language: Russian
Citation: M. I. Zelikin, D. D. Kiselev, L. V. Lokutsievskii, “Optimal control and Galois theory”, Sb. Math., 204:11 (2013), 1624–1638
Citation in format AMSBIB
\Bibitem{ZelKisLok13}
\by M.~I.~Zelikin, D.~D.~Kiselev, L.~V.~Lokutsievskii
\paper Optimal control and Galois theory
\jour Sb. Math.
\yr 2013
\vol 204
\issue 11
\pages 1624--1638
\mathnet{http://mi.mathnet.ru/eng/sm8211}
\crossref{https://doi.org/10.1070/SM2013v204n11ABEH004352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3155864}
\zmath{https://zbmath.org/?q=an:1286.49009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1624Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329933100005}
\elib{https://elibrary.ru/item.asp?id=21277042}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84892754058}
Linking options:
  • https://www.mathnet.ru/eng/sm8211
  • https://doi.org/10.1070/SM2013v204n11ABEH004352
  • https://www.mathnet.ru/eng/sm/v204/i11/p83
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1046
    Russian version PDF:318
    English version PDF:54
    References:104
    First page:98
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025