Математический сборник
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Математический сборник, 2014, том 205, номер 11, страницы 95–124
DOI: https://doi.org/10.4213/sm8332
(Mi sm8332)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

О концентрации $L_1$-нормы тригонометрических полиномов и целых функций

Ю. В. Малыхинa, К. С. Рютинb

a Математический институт им. В. А. Стеклова РАН
b Механико-математический факультет Московского государственного университета им. М. В. Ломоносова
Список литературы:
Аннотация: Для достаточно больших $n$ доказано, что минимальная мера подмножества $[-\pi,\pi]$, на котором некоторый ненулевой тригонометрический полином порядка не выше $n$ набирает половину $L_1$-нормы, равна $\pi/(n+1)$. Получен аналогичный результат для целых функций экспоненциального типа.
Библиография: 13 названий.
Ключевые слова: тригонометрические полиномы, целые функции, экстремальные задачи, $L_1$-норма.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 14-01-00332
Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 14-01-00332).
Поступила в редакцию: 21.01.2014 и 03.07.2014
Англоязычная версия:
Sbornik: Mathematics, 2014, Volume 205, Issue 11, Pages 1620–1649
DOI: https://doi.org/10.1070/SM2014v205n11ABEH004431
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.51
MSC: 42A05
Образец цитирования: Ю. В. Малыхин, К. С. Рютин, “О концентрации $L_1$-нормы тригонометрических полиномов и целых функций”, Матем. сб., 205:11 (2014), 95–124; Yu. V. Malykhin, K. S. Ryutin, “Concentration of the $L_1$-norm of trigonometric polynomials and entire functions”, Sb. Math., 205:11 (2014), 1620–1649
Цитирование в формате AMSBIB
\RBibitem{MalRyu14}
\by Ю.~В.~Малыхин, К.~С.~Рютин
\paper О~концентрации $L_1$-нормы тригонометрических полиномов и целых функций
\jour Матем. сб.
\yr 2014
\vol 205
\issue 11
\pages 95--124
\mathnet{http://mi.mathnet.ru/sm8332}
\crossref{https://doi.org/10.4213/sm8332}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408642}
\zmath{https://zbmath.org/?q=an:06417740}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1620M}
\elib{https://elibrary.ru/item.asp?id=22834494}
\transl
\by Yu.~V.~Malykhin, K.~S.~Ryutin
\paper Concentration of the $L_1$-norm of trigonometric polynomials and entire functions
\jour Sb. Math.
\yr 2014
\vol 205
\issue 11
\pages 1620--1649
\crossref{https://doi.org/10.1070/SM2014v205n11ABEH004431}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348594700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921771788}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sm8332
  • https://doi.org/10.4213/sm8332
  • https://www.mathnet.ru/rus/sm/v205/i11/p95
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Статистика просмотров:
    Страница аннотации:685
    PDF русской версии:224
    PDF английской версии:29
    Список литературы:62
    Первая страница:55
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024