|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
О непрерывных дробях с предельно периодическими коэффициентами
В. И. Буслаев Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
Аннотация:
В статье исследуется вопрос о граничных свойствах функций, представимых предельно периодическими непрерывными дробями достаточно общего вида. Показано, что исследуемые функции не имеют однозначного мероморфного продолжения ни в какую окрестность любой неизолированной граничной точки множества сходимости непрерывной дроби, а граница множества мероморфности предельной функции обладает свойством симметрии во внешнем поле, определяемом параметрами непрерывной дроби.
Библиография: 26 названий.
Ключевые слова:
непрерывные дроби, ганкелевы определители, мероморфное продолжение, трансфинитный диаметр.
Поступила в редакцию: 29.02.2016 и 27.06.2017
Образец цитирования:
В. И. Буслаев, “О непрерывных дробях с предельно периодическими коэффициентами”, Матем. сб., 209:2 (2018), 47–65; V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm8687https://doi.org/10.4213/sm8687 https://www.mathnet.ru/rus/sm/v209/i2/p47
|
Статистика просмотров: |
Страница аннотации: | 637 | PDF русской версии: | 75 | PDF английской версии: | 27 | Список литературы: | 58 | Первая страница: | 21 |
|