Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 3, Pages 449–468
DOI: https://doi.org/10.1070/SM8793
(Mi sm8793)
 

This article is cited in 2 scientific papers (total in 2 papers)

Relative asymptotics of orthogonal polynomials for perturbed measures

E. B. Saffa, N. Stylianopoulosb

a Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, TN, USA
b Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus
References:
Abstract: We survey and present some new results that are related to the behaviour of orthogonal polynomials in the plane under small perturbations of the measure of orthogonality. More precisely, we introduce the notion of a polynomially small (PS) perturbation of a measure. Namely, if $\mu_0 \geqslant \mu_1$ and $\{p_n(\mu_j,z)\}_{n=0}^\infty$, $j=0,1$, are the associated orthonormal polynomial sequences, then $\mu_0$ is a PS perturbation of $\mu_1$ if $\|p_n(\mu_1,\,\cdot\,)\|_{L_2(\mu_0-\mu_1)}\to 0$, as $n\to\infty$. In such a case we establish relative asymptotic results for the two sequences of orthonormal polynomials. We also provide results dealing with the behaviour of the zeros of PS perturbations of area orthogonal (Bergman) polynomials.
Bibliography: 35 titles.
Keywords: orthogonal polynomial, Christoffel function, Bergman polynomial, perturbed measure.
Funding agency Grant number
National Science Foundation DMS-1412428
DMS-1516400
University of Cyprus 3/311-21027
E. B. Saff's research was carried out with the support of the National Science Foundation (grant DMS-1516400). N. Stylianopoulos' research was carried out with the support of the University of Cyprus (grant 3/311-21027).
Received: 01.08.2016 and 03.06.2017
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 3, Pages 168–188
DOI: https://doi.org/10.4213/sm8793
Bibliographic databases:
Document Type: Article
UDC: 517.538.3
Language: English
Original paper language: Russian
Citation: E. B. Saff, N. Stylianopoulos, “Relative asymptotics of orthogonal polynomials for perturbed measures”, Mat. Sb., 209:3 (2018), 168–188; Sb. Math., 209:3 (2018), 449–468
Citation in format AMSBIB
\Bibitem{SafSty18}
\by E.~B.~Saff, N.~Stylianopoulos
\paper Relative asymptotics of orthogonal polynomials for perturbed measures
\jour Mat. Sb.
\yr 2018
\vol 209
\issue 3
\pages 168--188
\mathnet{http://mi.mathnet.ru/sm8793}
\crossref{https://doi.org/10.4213/sm8793}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3769219}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..449S}
\elib{https://elibrary.ru/item.asp?id=32641396}
\transl
\jour Sb. Math.
\yr 2018
\vol 209
\issue 3
\pages 449--468
\crossref{https://doi.org/10.1070/SM8793}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432853500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048134842}
Linking options:
  • https://www.mathnet.ru/eng/sm8793
  • https://doi.org/10.1070/SM8793
  • https://www.mathnet.ru/eng/sm/v209/i3/p168
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:664
    Russian version PDF:42
    English version PDF:6
    References:43
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024