Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 11, Pages 1602–1627
DOI: https://doi.org/10.1070/SM8823
(Mi sm8823)
 

This article is cited in 14 scientific papers (total in 14 papers)

Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey

A. Böttchera, C. Garonibc, S. Serra-Capizzanobd

a Fakultät für Mathematik, Technische Universität Chemnitz, Chemnitz, Germany
b Department of Science and High Technology, University of Insubria, Como, Italy
c Institute of Computational Science, Università della Svizzera Italiana, Lugano, Switzerland
d Department of Information Technology, Uppsala University, Uppsala, Sweden
References:
Abstract: It is often asked why Toeplitz-like matrices with unbounded symbols are worth studying. This paper gives an answer by presenting several concrete problems that motivate such studies. It surveys the central results of the theory of Generalized Locally Toeplitz (GLT) sequences in a self-contained tool-kit fashion, and gives a new extension from bounded Riemann integrable functions to unbounded almost everywhere continuous functions. The emergence of unbounded symbols is illustrated by local grid refinements in finite difference and finite element discretizations and also by preconditioning strategies.
Bibliography: 40 titles.
Keywords: Toeplitz-like matrices, eigenvalue distribution, singular value distribution, GLT-sequences, local grid refinement.
Funding agency Grant number
Istituto Nazionale di Alta Matematica "Francesco Severi" PCOFUND-GA-2012-600198
Carlo Garoni is a Marie-Curie fellow of the Italian INdAM (Istituto Nazionale di Alta Matematica “Francesco Severi”) under grant agreement PCOFUND-GA-2012-600198).
Received: 02.07.2016
Russian version:
Matematicheskii Sbornik, 2017, Volume 208, Number 11, Pages 29–55
DOI: https://doi.org/10.4213/sm8823
Bibliographic databases:
Document Type: Article
UDC: 517.983.3+512.643.8+519.62
MSC: Primary 47B35; Secondary 15B05, 65F08, 65F15, 65L50
Language: English
Original paper language: Russian
Citation: A. Böttcher, C. Garoni, S. Serra-Capizzano, “Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey”, Mat. Sb., 208:11 (2017), 29–55; Sb. Math., 208:11 (2017), 1602–1627
Citation in format AMSBIB
\Bibitem{BotGarSer17}
\by A.~B\"ottcher, C.~Garoni, S.~Serra-Capizzano
\paper Exploration of Toeplitz-like matrices with unbounded symbols is not a~purely academic journey
\jour Mat. Sb.
\yr 2017
\vol 208
\issue 11
\pages 29--55
\mathnet{http://mi.mathnet.ru/sm8823}
\crossref{https://doi.org/10.4213/sm8823}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3717196}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1602B}
\elib{https://elibrary.ru/item.asp?id=30512342}
\transl
\jour Sb. Math.
\yr 2017
\vol 208
\issue 11
\pages 1602--1627
\crossref{https://doi.org/10.1070/SM8823}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000423477000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019215233}
Linking options:
  • https://www.mathnet.ru/eng/sm8823
  • https://doi.org/10.1070/SM8823
  • https://www.mathnet.ru/eng/sm/v208/i11/p29
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:481
    Russian version PDF:43
    English version PDF:15
    References:44
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024