Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 8, Pages 1159–1170
DOI: https://doi.org/10.1070/SM9295
(Mi sm9295)
 

This article is cited in 1 scientific paper (total in 1 paper)

On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials

P. V. Paramonovab, K. Yu. Fedorovskiybc

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
b Bauman Moscow State Technical University
c Saint Petersburg State University
References:
Abstract: We obtain several new sharp $C^m$-continuity conditions, both necessary and sufficient, for operators of harmonic reflection of functions over boundaries of simple Carathéodory domains in $\mathbb R^N$. These results are based on a new criterion (also obtained in this paper) for $C^m$-continuity of the Poisson operator in the aforesaid domains. As corollaries, we give new sufficient conditions for $C^m$-approximability of functions by harmonic polynomials on boundaries of simple Carathéodory domains in $\mathbb R^N$.
Bibliography: 17 titles.
Keywords: simple Carathéodory domain, Poisson operator, harmonic reflection operator, Lipschitz-Hölder spaces, $C^m$-approximation by harmonic polynomials.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 1.3843.2017/4.6
1.517.2016/1.4
Russian Foundation for Basic Research 18-01-00764-а
Simons Foundation
The work of P. V. Paramonov was supported by the Ministry of Science and Higher Education of Russia (state assignment no. 1.3843.2017/4.6). The work of K. Yu. Fedorovskiy was supported by the Ministry of Science and Higher Education of Russia (state assignment no. 1.517.2016/1.4), and by the Russian Foundation for Basic Research (grant no. 18-01-00764-a) and the Simons Foundation (within the program “Simons-IUM fellowship”).
Received: 24.06.2019 and 19.02.2020
Bibliographic databases:
Document Type: Article
UDC: 517.572+517.538
MSC: Primary 31B05; Secondary 31A05, 30E10, 30E25
Language: English
Original paper language: Russian
Citation: P. V. Paramonov, K. Yu. Fedorovskiy, “On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials”, Sb. Math., 211:8 (2020), 1159–1170
Citation in format AMSBIB
\Bibitem{ParFed20}
\by P.~V.~Paramonov, K.~Yu.~Fedorovskiy
\paper On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials
\jour Sb. Math.
\yr 2020
\vol 211
\issue 8
\pages 1159--1170
\mathnet{http://mi.mathnet.ru//eng/sm9295}
\crossref{https://doi.org/10.1070/SM9295}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153725}
\zmath{https://zbmath.org/?q=an:1456.31006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211.1159P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000586543600001}
\elib{https://elibrary.ru/item.asp?id=45173835}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095129663}
Linking options:
  • https://www.mathnet.ru/eng/sm9295
  • https://doi.org/10.1070/SM9295
  • https://www.mathnet.ru/eng/sm/v211/i8/p102
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:342
    Russian version PDF:57
    English version PDF:37
    References:46
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024