Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 6, Pages 850–874
DOI: https://doi.org/10.1070/SM9302
(Mi sm9302)
 

This article is cited in 13 scientific papers (total in 13 papers)

Functions with universal Fourier-Walsh series

M. G. Grigoryan

Faculty of Physics, Yerevan State University, Yerevan, Republic of Armenia
References:
Abstract: We prove results on the existence of functions whose Fourier series in the Walsh system are universal in some sense or other in the function classes $L^p[0,1]$, $0<p<1$, and $M[0,1]$. We also give a description of the structure of these functions.
Bibliography: 30 titles.
Keywords: universal functions, Fourier-Walsh series, convergence, almost everywhere convergence.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 18T-1A148
This research was carried out with the financial support of the State Committee on Science of the Ministry of Education and Science of the Republic of Armenia (project no. 18T-1A148).
Received: 07.07.2019 and 08.12.2019
Russian version:
Matematicheskii Sbornik, 2020, Volume 211, Number 6, Pages 107–131
DOI: https://doi.org/10.4213/sm9302
Bibliographic databases:
Document Type: Article
UDC: 517.538
PACS: УДК 517.538
MSC: 42C10, 43A15
Language: English
Original paper language: Russian
Citation: M. G. Grigoryan, “Functions with universal Fourier-Walsh series”, Mat. Sb., 211:6 (2020), 107–131; Sb. Math., 211:6 (2020), 850–874
Citation in format AMSBIB
\Bibitem{Gri20}
\by M.~G.~Grigoryan
\paper Functions with universal Fourier-Walsh series
\jour Mat. Sb.
\yr 2020
\vol 211
\issue 6
\pages 107--131
\mathnet{http://mi.mathnet.ru/sm9302}
\crossref{https://doi.org/10.4213/sm9302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104777}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..850G}
\elib{https://elibrary.ru/item.asp?id=45172678}
\transl
\jour Sb. Math.
\yr 2020
\vol 211
\issue 6
\pages 850--874
\crossref{https://doi.org/10.1070/SM9302}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564137700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094980669}
Linking options:
  • https://www.mathnet.ru/eng/sm9302
  • https://doi.org/10.1070/SM9302
  • https://www.mathnet.ru/eng/sm/v211/i6/p107
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:369
    Russian version PDF:55
    English version PDF:15
    References:39
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024