Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 5, Pages 605–635
DOI: https://doi.org/10.1070/SM9381
(Mi sm9381)
 

This article is cited in 1 scientific paper (total in 1 paper)

Manifolds of isospectral arrow matrices

A. A. Ayzenberga, V. M. Buchstaberb

a Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: An arrow matrix is a matrix with zeros outside the main diagonal, the first row and the first column. We consider the space $M_{\operatorname{St}_n,\lambda}$ of Hermitian arrow $(n+1)\times (n+1)$-matrices with fixed simple spectrum $\lambda$. We prove that this space is a smooth $2n$-manifold with a locally standard torus action: we describe the topology and combinatorics of its orbit space. If $n\geqslant 3$, the orbit space $M_{\operatorname{St}_n,\lambda}/T^n$ is not a polytope, hence $M_{\operatorname{St}_n,\lambda}$ is not a quasitoric manifold. However, there is an action of a semidirect product $T^n\rtimes\Sigma_n$ on $M_{\operatorname{St}_n,\lambda}$, and the orbit space of this action is a certain simple polytope $\mathscr{B}^n$ obtained from the cube by cutting off codimension-2 faces. In the case $n=3$, the space $M_{\operatorname{St}_3,\lambda}/T^3$ is a solid torus with boundary subdivided into hexagons in a regular way. This description allows us to compute the cohomology ring and equivariant cohomology ring of the 6-dimensional manifold $M_{\operatorname{St}_3,\lambda}$ and another manifold, its twin.
Bibliography: 32 titles.
Keywords: sparse matrix, group action, moment map, fundamental domain, codimension-2 face cuts.
Funding agency Grant number
HSE Basic Research Program
Ministry of Education and Science of the Russian Federation 5-100
This research was carried out within the framework of the Basic Research Program at HSE University and funded by the Russian Academic Excellence Project “5-100”.
Received: 18.02.2020 and 15.01.2021
Bibliographic databases:
Document Type: Article
UDC: 515.146
MSC: Primary 52B11, 15A42, 57R19, 57R91; Secondary 05E45, 52B70, 15B57, 52C45, 55N91, 57S25, 20Bxx, 53D20
Language: English
Original paper language: Russian
Citation: A. A. Ayzenberg, V. M. Buchstaber, “Manifolds of isospectral arrow matrices”, Sb. Math., 212:5 (2021), 605–635
Citation in format AMSBIB
\Bibitem{AyzBuc21}
\by A.~A.~Ayzenberg, V.~M.~Buchstaber
\paper Manifolds of isospectral arrow matrices
\jour Sb. Math.
\yr 2021
\vol 212
\issue 5
\pages 605--635
\mathnet{http://mi.mathnet.ru/eng/sm9381}
\crossref{https://doi.org/10.1070/SM9381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4250533}
\zmath{https://zbmath.org/?q=an:1468.58009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212..605A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000700907000001}
\elib{https://elibrary.ru/item.asp?id=46929976}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111607932}
Linking options:
  • https://www.mathnet.ru/eng/sm9381
  • https://doi.org/10.1070/SM9381
  • https://www.mathnet.ru/eng/sm/v212/i5/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:561
    Russian version PDF:97
    English version PDF:70
    Russian version HTML:201
    References:69
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025