Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2008, Volume 49, Number 3, Pages 668–681 (Mi smj1869)  

This article is cited in 1 scientific paper (total in 1 paper)

Distance regularity of Kerdock codes

F. I. Solov'eva, N. N. Tokareva

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (343 kB) Citations (1)
References:
Abstract: A code is called distance regular, if for every two codewords $\mathbf x,\mathbf y$ and integers $i,j$ the number of codewords $\mathbf z$ such that $d(\mathbf x,\mathbf z)=i$ and $d(\mathbf y,\mathbf z)=j$, with $d$ the Hamming distance, does not depend on the choice of $\mathbf x,\mathbf y$ and depends only on $d(\mathbf x,\mathbf y)$ and $i,j$. Using some properties of the discrete Fourier transform we give a new combinatorial proof of the distance regularity of an arbitrary Kerdock code. We also calculate the parameters of the distance regularity of a Kerdock code.
Keywords: distance regular code, Kerdock code, Reed–Muller code, discrete Fourier transform, bent function, distance regular graph, association scheme.
Received: 30.05.2006
English version:
Siberian Mathematical Journal, 2008, Volume 49, Issue 3, Pages 539–548
DOI: https://doi.org/10.1007/s11202-008-0051-7
Bibliographic databases:
UDC: 519.725
Language: Russian
Citation: F. I. Solov'eva, N. N. Tokareva, “Distance regularity of Kerdock codes”, Sibirsk. Mat. Zh., 49:3 (2008), 668–681; Siberian Math. J., 49:3 (2008), 539–548
Citation in format AMSBIB
\Bibitem{SolTok08}
\by F.~I.~Solov'eva, N.~N.~Tokareva
\paper Distance regularity of Kerdock codes
\jour Sibirsk. Mat. Zh.
\yr 2008
\vol 49
\issue 3
\pages 668--681
\mathnet{http://mi.mathnet.ru/smj1869}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2442545}
\zmath{https://zbmath.org/?q=an:1155.94414}
\transl
\jour Siberian Math. J.
\yr 2008
\vol 49
\issue 3
\pages 539--548
\crossref{https://doi.org/10.1007/s11202-008-0051-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256329000015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44349088189}
Linking options:
  • https://www.mathnet.ru/eng/smj1869
  • https://www.mathnet.ru/eng/smj/v49/i3/p668
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:340
    Full-text PDF :84
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024