Abstract:
Let $L$ be a simple linear or unitary group of dimension larger than 3 over a finite field of characteristic $p$. We deal with the class of finite groups isospectral to $L$. It is known that a group of this class has a unique nonabelian composition factor. We prove that if $L\ne U_4(2),U_5(2)$ then this factor is isomorphic to either $L$ or a group of Lie type over a field of characteristic different from $p$.
Keywords:
finite group, spectrum of a group, simple group, linear group, unitary group, composition factor.
Citation:
A. V. Vasil'ev, M. A. Grechkoseeva, A. M. Staroletov, “On finite groups isospectral to simple linear and unitary groups”, Sibirsk. Mat. Zh., 52:1 (2011), 39–53; Siberian Math. J., 52:1 (2011), 30–40
\Bibitem{VasGreSta11}
\by A.~V.~Vasil'ev, M.~A.~Grechkoseeva, A.~M.~Staroletov
\paper On finite groups isospectral to simple linear and unitary groups
\jour Sibirsk. Mat. Zh.
\yr 2011
\vol 52
\issue 1
\pages 39--53
\mathnet{http://mi.mathnet.ru/smj2176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2810249}
\transl
\jour Siberian Math. J.
\yr 2011
\vol 52
\issue 1
\pages 30--40
\crossref{https://doi.org/10.1134/S0037446606010046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288172400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952378212}
Linking options:
https://www.mathnet.ru/eng/smj2176
https://www.mathnet.ru/eng/smj/v52/i1/p39
This publication is cited in the following 11 articles:
Maria A. Grechkoseeva, Victor D. Mazurov, Wujie Shi, Andrey V. Vasil'ev, Nanying Yang, “Finite Groups Isospectral to Simple Groups”, Commun. Math. Stat., 11:2 (2023), 169
M. A. Grechkoseeva, M. A. Zvezdina, “On recognition of $l_4(q)$ and $u_4(q)$ by spectrum”, Siberian Math. J., 61:6 (2020), 1039–1065
Yang N. Grechkoseeva M.A. Vasil'ev A.V., “on the Nilpotency of the Solvable Radical of a Finite Group Isospectral to a Simple Group”, J. Group Theory, 23:3 (2020), 447–470
Grechkoseeva M.A. Vasil'ev A.V. Zvezdina M.A., “Recognition of Symplectic and Orthogonal Groups of Small Dimensions By Spectrum”, J. Algebra. Appl., 18:12 (2019), 1950230
M. A. Grechkoseeva, “On spectra of almost simple extensions of even-dimensional orthogonal groups”, Siberian Math. J., 59:4 (2018), 623–640
Staroletov A., “On Almost Recognizability By Spectrum of Simple Classical Groups”, Int. J. Group Theory, 6:4 (2017), 7–33
Wei Dong, Baogang Xu, “2-Distance coloring of planar graphs with girth 5”, J Comb Optim, 34:4 (2017), 1302
A. V. Vasil'ev, A. M. Staroletov, “Almost recognizability by spectrum of simple exceptional groups of Lie type”, Algebra and Logic, 53:6 (2015), 433–449
M. A. Zvezdina, “On nonabelian simple groups having the same prime graph as an alternating group”, Siberian Math. J., 54:1 (2013), 47–55
M. A. Grechkoseeva, D. V. Lytkin, “Almost recognizability by spectrum of finite simple linear groups of prime dimension”, Siberian Math. J., 53:4 (2012), 645–655
A. M. Staroletov, “Sporadic composition factors of finite groups isospectral to simple groups”, Sib. elektron. matem. izv., 8 (2011), 268–272