Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский математический журнал, 2015, том 56, номер 2, страницы 290–321 (Mi smj2639)  

Эта публикация цитируется в 17 научных статьях (всего в 17 статьях)

Емкостные оценки, теоремы Лиувилля и об устранении особенностей для отображений с ограниченным $(p,q)$-искажением

А. Н. Байкинab, С. К. Водопьяновab

a Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090
b Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090
Список литературы:
Аннотация: Отображения с ограниченным весовым $(p,q)$-искажением представляют собой естественное обобщение известного в литературе класса отображений с ограниченным искажением, входящего в двухиндексную шкалу при $p=q=n$ и отсутствии весовых функций. В случае $n-1<q\le p=n$ отображения с ограниченным $(p,q)$-искажением исследовались ранее в ряде работ при дополнительном предположении $\mathscr N$-свойства Лузина данного отображения. В данной работе изложены первоначальные сведения теории отображений с ограниченным $(p,q)$-искажением, полученные без дополнительных аналитических предположений. Основу теории составляют новые аналитические свойства перенесенных функций: в частности, доказано, что на образе точек ветвления градиент перенесенной функции равен нулю почти всюду. Выведены оценки на емкости образов конденсаторов для отображений с ограниченным $(p,q)$-искажением. Получены теоремы типа Лиувилля, теоремы о затирании особенностей для отображений данного класса и дано их применение к классификации многообразий.
Ключевые слова: отображение с ограниченным весовым $(p,q)$-искажением, емкостная оценка, теорема типа Лиувилля, теорема о затирании особенностей.
Статья поступила: 06.10.2014
Англоязычная версия:
Siberian Mathematical Journal, 2015, Volume 56, Issue 2, Pages 237–261
DOI: https://doi.org/10.1134/S0037446615020056
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.54
Образец цитирования: А. Н. Байкин, С. К. Водопьянов, “Емкостные оценки, теоремы Лиувилля и об устранении особенностей для отображений с ограниченным $(p,q)$-искажением”, Сиб. матем. журн., 56:2 (2015), 290–321; Siberian Math. J., 56:2 (2015), 237–261
Цитирование в формате AMSBIB
\RBibitem{BaiVod15}
\by А.~Н.~Байкин, С.~К.~Водопьянов
\paper Емкостные оценки, теоремы Лиувилля и об устранении особенностей для отображений с~ограниченным $(p,q)$-искажением
\jour Сиб. матем. журн.
\yr 2015
\vol 56
\issue 2
\pages 290--321
\mathnet{http://mi.mathnet.ru/smj2639}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3381241}
\elib{https://elibrary.ru/item.asp?id=23112840}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 2
\pages 237--261
\crossref{https://doi.org/10.1134/S0037446615020056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353794200005}
\elib{https://elibrary.ru/item.asp?id=24027728}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928821771}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/smj2639
  • https://www.mathnet.ru/rus/smj/v56/i2/p290
  • Эта публикация цитируется в следующих 17 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:578
    PDF полного текста:159
    Список литературы:83
    Первая страница:19
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024