|
This article is cited in 18 scientific papers (total in 18 papers)
The index set of Boolean algebras autostable relative to strong constructivizations
S. S. Goncharovab, N. A. Bazhenovba, M. I. Marchuka a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Abstract:
We obtain exact estimates for the algorithmic complexity for the classes of strongly constructivizable computable models autostable relative to strong constructivizations and belonging to the following natural classes: Boolean algebras, distributive lattices, rings, commutative semigroups, and partial orders.
Keywords:
computable model, strongly constructivizable model, autostability, autostability relative to strong constructivizations, Boolean algebra, distributive lattice, ring, commutative semigroup, partial order, hyperarithmetic hierarchy, index set.
Received: 18.03.2015
Citation:
S. S. Goncharov, N. A. Bazhenov, M. I. Marchuk, “The index set of Boolean algebras autostable relative to strong constructivizations”, Sibirsk. Mat. Zh., 56:3 (2015), 498–512; Siberian Math. J., 56:3 (2015), 393–404
Linking options:
https://www.mathnet.ru/eng/smj2655 https://www.mathnet.ru/eng/smj/v56/i3/p498
|
Statistics & downloads: |
Abstract page: | 282 | Full-text PDF : | 64 | References: | 49 | First page: | 12 |
|