Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2020, Volume 61, Number 1, Pages 17–28
DOI: https://doi.org/10.33048/smzh.2020.61.102
(Mi smj5962)
 

This article is cited in 2 scientific papers (total in 2 papers)

The anick complex and the hochschild cohomology of the manturov (2,3)-group

H. Alhusseina, P. S. Kolesnikovb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (634 kB) Citations (2)
References:
Abstract: The Manturov $(2,3)$-group $G_3^2$ is the group generated by three elements $a$, $b$, and $c$ with defining relations $a^2=b^2=c^2=(abc)^2=1$. We explicitly calculate the Anick chain complex for $G_3^2$ by algebraic discrete Morse theory and evaluate the Hochschild cohomology groups of the group algebra $\Bbbk G_3^2$ with coefficients in all 1-dimensional bimodules over a field $\Bbbk $ of characteristic zero.
Keywords: hochschild cohomology, anick resolution, gröbner–Shirshov basis, morse matching.
Received: 26.03.2019
Revised: 09.07.2019
Accepted: 24.07.2019
English version:
Siberian Mathematical Journal, 2020, Volume 61, Issue 1, Pages 11–20
DOI: https://doi.org/10.1134/S0037446620010024
Bibliographic databases:
Document Type: Article
UDC: 512.664.2
Language: Russian
Citation: H. Alhussein, P. S. Kolesnikov, “The anick complex and the hochschild cohomology of the manturov (2,3)-group”, Sibirsk. Mat. Zh., 61:1 (2020), 17–28; Siberian Math. J., 61:1 (2020), 11–20
Citation in format AMSBIB
\Bibitem{AlhKol20}
\by H.~Alhussein, P.~S.~Kolesnikov
\paper The anick complex and the hochschild cohomology of the manturov (2,3)-group
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 1
\pages 17--28
\mathnet{http://mi.mathnet.ru/smj5962}
\crossref{https://doi.org/10.33048/smzh.2020.61.102}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 1
\pages 11--20
\crossref{https://doi.org/10.1134/S0037446620010024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000516567300002}
Linking options:
  • https://www.mathnet.ru/eng/smj5962
  • https://www.mathnet.ru/eng/smj/v61/i1/p17
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :60
    References:37
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024