Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2023, Volume 64, Number 4, Pages 786–793
DOI: https://doi.org/10.33048/smzh.2023.64.411
(Mi smj7798)
 

Well-formedness vs weak well-formedness

V. V. Przyjalkowski

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: The literature contains two definitions of well formed varieties in weighted projective spaces. By the first, a variety is well formed if its intersection with the singular locus of the ambient weighted projective space has codimension at least 2. By the second, a variety is well formed if it does not include a singular stratum of the ambient weighted projective space in codimension 1. We show that these two definitions differ indeed, and show that they coincide for the quasismooth weighted complete intersections of dimension at least 3.
Keywords: well-formedness, weighted complete intersections.
Funding agency Grant number
Russian Science Foundation 19-11-00164
Received: 10.02.2023
Revised: 27.04.2023
Accepted: 16.05.2023
Document Type: Article
UDC: 512.7
MSC: 35R30
Language: Russian
Citation: V. V. Przyjalkowski, “Well-formedness vs weak well-formedness”, Sibirsk. Mat. Zh., 64:4 (2023), 786–793
Citation in format AMSBIB
\Bibitem{Prz23}
\by V.~V.~Przyjalkowski
\paper Well-formedness vs weak well-formedness
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 4
\pages 786--793
\mathnet{http://mi.mathnet.ru/smj7798}
\crossref{https://doi.org/10.33048/smzh.2023.64.411}
Linking options:
  • https://www.mathnet.ru/eng/smj7798
  • https://www.mathnet.ru/eng/smj/v64/i4/p786
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :17
    References:11
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024