Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 6, Pages 68–74 (Mi smj810)  

This article is cited in 12 scientific papers (total in 12 papers)

Matrix invariants over an infinite field of finite characteristic

A. N. Zubkov
Abstract: Generators of the ring of invariants are found for $(n\times n)$-matrices over an infinite field of characteristic $p>n^2-1$. The result is analogous to the well-known Procesi's theorem in characteristic zero.
Received: 10.06.1992
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 6, Pages 1059–1065
DOI: https://doi.org/10.1007/BF00973469
Bibliographic databases:
UDC: 519.4
Language: Russian
Citation: A. N. Zubkov, “Matrix invariants over an infinite field of finite characteristic”, Sibirsk. Mat. Zh., 34:6 (1993), 68–74; Siberian Math. J., 34:6 (1993), 1059–1065
Citation in format AMSBIB
\Bibitem{Zub93}
\by A.~N.~Zubkov
\paper Matrix invariants over an infinite field of finite characteristic
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 6
\pages 68--74
\mathnet{http://mi.mathnet.ru/smj810}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1268158}
\zmath{https://zbmath.org/?q=an:0832.16023}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 6
\pages 1059--1065
\crossref{https://doi.org/10.1007/BF00973469}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MQ34600007}
Linking options:
  • https://www.mathnet.ru/eng/smj810
  • https://www.mathnet.ru/eng/smj/v34/i6/p68
  • This publication is cited in the following 12 articles:
    1. Alexei Belov-Kanel, Farrokh Razavinia, Wenchao Zhang, “Centralizers in Free Associative Algebras and Generic Matrices”, Mediterr. J. Math., 20:2 (2023)  crossref
    2. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. I. Introduction”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 213, VINITI RAN, M., 2022, 110–144  mathnet  crossref
    3. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. II. Quantization proof of Bergman's centralizer theorem”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 214, VINITI RAN, M., 2022, 107–126  mathnet  crossref
    4. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. III. Avtomorfizmy, topologiya popolneniya i approksimatsiya”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 215, VINITI RAN, M., 2022, 95–128  mathnet  crossref
    5. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. IV. Approksimatsii polinomialnymi simplektomorfizmami”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 216, VINITI RAN, M., 2022, 153–171  mathnet  crossref
    6. A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. V. Gipoteza Yakobiana i problemy tipa Shpekhta i Bernsaida”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 217, VINITI RAN, M., 2022, 107–137  mathnet  crossref
    7. Wenchao Zhang, Roman Yavich, Alexei Belov-Kanel, Farrokh Razavinia, Andrey Elishev, Jietai Yu, “Polynomial Automorphisms, Deformation Quantization and Some Applications on Noncommutative Algebras”, Mathematics, 10:22 (2022), 4214  crossref
    8. H. DERKSEN, V. MAKAM, “WEYL'S POLARIZATION THEOREM IN POSITIVE CHARACTERISTIC”, Transformation Groups, 26:4 (2021), 1241  crossref
    9. Harm Derksen, Visu Makam, “Algorithms for orbit closure separation for invariants and semi-invariants of matrices”, Alg. Number Th., 14:10 (2020), 2791  crossref
    10. Harm Derksen, Visu Makam, “Generating invariant rings of quivers in arbitrary characteristic”, Journal of Algebra, 489 (2017), 435  crossref
    11. Domokos M., Kuzmin S.G., Zubkov A., “Rings of matrix invariants in positive characteristic”, Journal of Pure and Applied Algebra, 176:1 (2002), 61–80  crossref  mathscinet  zmath  isi
    12. A. N. Zubkov, “On a generalization of the Razmyslov-Procesi theorem”, Algebra and Logic,  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :126
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025