|
Generalized completely integrable systems
Valery V. Kozlov Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Аннотация:
Dynamical systems more general than Hamiltonian systems are considered. The role of the Hamiltonian function is played by a $1$-form (not necessarily closed) on a symplectic phase space. A bracket of such forms is introduced and a generalized Liouville theorem on the complete integrability is formulated. This generalization allows us to better understand the meaning of the conditions of the classical theorem on the complete integrability of the Hamilton equations and to reveal the role of tensor invariants.
Ключевые слова:
symplectic manifold, differential forms, distributions, Hamilton equations, Lie bracket, Poisson bracket, tensor invariants, complete integrability.
Поступила в редакцию: 10.01.2025 Принята в печать: 29.05.2025
Образец цитирования:
Valery V. Kozlov, “Generalized completely integrable systems”, Theor. Appl. Mech., 52:1 (2025), 1–7
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tam148 https://www.mathnet.ru/rus/tam/v52/i1/p1
|
| Статистика просмотров: |
| Страница аннотации: | 74 | | PDF полного текста: | 25 | | Список литературы: | 21 |
|