|
First steps towards the averaging with respect to a part of the coordinates
Ivan Polekhinabcd a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology, Dolgoprudny, Russia
c Lomonosov Moscow State University, Moscow, Russia
d P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
Аннотация:
The problem of averaging on an infinite time interval is considered. The classical results on averaging proved by N.N. Bogoluybov are generalized to the case in which only a part of the coordinates in the phase space remains close to the equilibrium position of the averaged system. We call this the averaging with respect to a part of the coordinates. The results are based on some topological ideas combined with the standard theorem on averaging on a finite time interval.
Ключевые слова:
periodic systems, averaging, rapid oscillations, infinite time interval, topological methods in dynamics.
Поступила в редакцию: 10.01.2025
Образец цитирования:
Ivan Polekhin, “First steps towards the averaging with respect to a part of the coordinates”, Theor. Appl. Mech., 52:1 (2025), 115–125
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tam156 https://www.mathnet.ru/rus/tam/v52/i1/p115
|
| Статистика просмотров: |
| Страница аннотации: | 57 | | PDF полного текста: | 21 | | Список литературы: | 16 |
|