Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2016, Volume 24, Number 1, Pages 95–99 (Mi timb262)  

On finite solvable groups with bicyclic cofactors of primary subgroups

A. A. Trofimuk, D. D. Daudov

A. S. Pushkin Brest State University
References:
Abstract: Finite soluble groups with bicyclic cofactors of primary subgroups are investigated. It is proved that the derived length of $G/\Phi(G)$ is at most $6,$ the nilpotent length of $G$ is at most $4,$ $\{2,3\}'$-Hall subgroup of $G$ possesses an ordered Sylow tower of supersolvable type and normal in $G$.
Received: 17.03.2016
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. A. Trofimuk, D. D. Daudov, “On finite solvable groups with bicyclic cofactors of primary subgroups”, Tr. Inst. Mat., 24:1 (2016), 95–99
Citation in format AMSBIB
\Bibitem{TroDau16}
\by A.~A.~Trofimuk, D.~D.~Daudov
\paper On finite solvable groups with bicyclic cofactors of primary subgroups
\jour Tr. Inst. Mat.
\yr 2016
\vol 24
\issue 1
\pages 95--99
\mathnet{http://mi.mathnet.ru/timb262}
Linking options:
  • https://www.mathnet.ru/eng/timb262
  • https://www.mathnet.ru/eng/timb/v24/i1/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :115
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025