|
Труды Института математики, 2018, том 26, номер 1, страницы 25–30
(Mi timb286)
|
|
|
|
Комплексные алгебраические числа в областях $\mathbb{C}^2$ малой меры Лебега
В. И. Берник, М. А. Жур Институт математики НАН Беларуси
Аннотация:
В середине XIX века П. Дирихле доказал, что действительные числа можно приблизить рациональными лучше, чем было принято в приближенных вычислениях [1–3]. При классификации действительных и комплексных чисел К. Малер [4] выдвинул гипотезу о том, что почти все (в смысле меры Лебега в $\mathrm{\mathbb{R} }$ и $\mathrm{\mathbb{C} }$) действительные и комплексные числа имеют одинаковый порядок приближения алгебраическими. Его гипотеза была решена В. Г. Спринджуком [5, 6] и обобщена в [7–9].
Задачи о распределении точек с рациональными координатами в областях евклидова пространства $\mathrm{\mathbb{R} }^{k}$ являются обобщением проблем подсчета количества целых точек в выпуклых областях. Рассматриваемые точки лежат внутри некоторого множества, содержащегося в $\mathrm{\mathbb{R} }^{k}$. В частности, рассматривается окрестность некоторой гладкой функции $f\colon I\rightarrow \mathrm{\mathbb{R} }$. За последние годы в работах М. Хаксли, В. И. Берника, В. В. Бересневича, Д. Диккинсона, С. Велани, Р. Вогана [10, 11] были найдены асимптотические оценки сверху и снизу для количества рациональных точек вблизи гладких кривых и поверхностей. Данные оценки были получены с помощью методов метрической теории диофантовых приближений.
Аналогичные результаты, связанные с распределением алгебраических точек в окрестности гладкой кривой на двумерной вещественной плоскости $\mathrm{\mathbb{R} }^{2}$, были впервые получены в работе [12] и являются обобщением задачи о распределении рациональных точек. В данной статье рассмотрена задача о распределении алгебраических чисел в областях пространства $\mathbf{\mathbb{C} }^{2}$.
Поступила в редакцию: 04.06.2018
Образец цитирования:
В. И. Берник, М. А. Жур, “Комплексные алгебраические числа в областях $\mathbb{C}^2$ малой меры Лебега”, Тр. Ин-та матем., 26:1 (2018), 25–30
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timb286 https://www.mathnet.ru/rus/timb/v26/i1/p25
|
Статистика просмотров: |
Страница аннотации: | 51 | PDF полного текста: | 13 | Список литературы: | 8 |
|