Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 4, Pages 30–45 (Mi timm1227)  

On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums

N. Yu. Antonov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: Let a sequence of $d$-dimensional vectors $\mathbf{n}_k=(n_k^1, n_k^2,\ldots,n_k^d)$ with positive integer coordinates satisfy the condition $n_k^j=\alpha_j m_k+O(1), \ k \in {\mathbb N}, \ 1 \le j \le d,$\; where $\alpha _1>0,$ $\ldots,\alpha _d>0,$ and $\{ m_k \} _{k=1}^{\infty }$ is an increasing sequence of positive integers. Under some conditions on a function $\varphi :[0,+\infty ) \to [0,+\infty )$, it is proved that, if the sequence of Fourier sums $S_{m_k}(g,x)$ converges almost everywhere for any function $g \in \varphi (L) ([0 , 2\pi ))$, then, for any $d \in {\mathbb N}$ and $f \in \varphi (L)(\ln ^+L)^{d-1}([0 , 2\pi ) ^d) $, the sequence $ S_{\mathbf {n}_k} (f,\mathbf x)$ of rectangular partial sums of the multiple trigonometric Fourier series of the function $f$ and the corresponding sequences of partial sums of all conjugate series converge almost everywhere.
Keywords: multiple trigonometric fourier series, convergence almost everywhere.
Received: 20.10.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 296, Issue 1, Pages 43–59
DOI: https://doi.org/10.1134/S0081543817020055
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: N. Yu. Antonov, “On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 4, 2015, 30–45; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 43–59
Citation in format AMSBIB
\Bibitem{Ant15}
\by N.~Yu.~Antonov
\paper On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 4
\pages 30--45
\mathnet{http://mi.mathnet.ru/timm1227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468428}
\elib{https://elibrary.ru/item.asp?id=25300982}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 43--59
\crossref{https://doi.org/10.1134/S0081543817020055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000005}
Linking options:
  • https://www.mathnet.ru/eng/timm1227
  • https://www.mathnet.ru/eng/timm/v21/i4/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :110
    References:93
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025