|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 4, Pages 30–45
(Mi timm1227)
|
|
|
|
On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums
N. Yu. Antonov Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Abstract:
Let a sequence of $d$-dimensional vectors $\mathbf{n}_k=(n_k^1, n_k^2,\ldots,n_k^d)$ with positive integer coordinates satisfy the condition $n_k^j=\alpha_j m_k+O(1), \ k \in {\mathbb N}, \ 1 \le j \le d,$\; where $\alpha _1>0,$ $\ldots,\alpha _d>0,$ and $\{ m_k \} _{k=1}^{\infty }$ is an increasing sequence of positive integers. Under some conditions on a function $\varphi :[0,+\infty ) \to [0,+\infty )$, it is proved that, if the sequence of Fourier sums $S_{m_k}(g,x)$ converges almost everywhere for any function $g \in \varphi (L) ([0 , 2\pi ))$, then, for any $d \in {\mathbb N}$ and $f \in \varphi (L)(\ln ^+L)^{d-1}([0 , 2\pi ) ^d) $, the sequence $ S_{\mathbf {n}_k} (f,\mathbf x)$ of rectangular partial sums of the multiple trigonometric Fourier series of the function $f$ and the corresponding sequences of partial sums of all conjugate series converge almost everywhere.
Keywords:
multiple trigonometric fourier series, convergence almost everywhere.
Received: 20.10.2014
Citation:
N. Yu. Antonov, “On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 4, 2015, 30–45; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 43–59
Linking options:
https://www.mathnet.ru/eng/timm1227 https://www.mathnet.ru/eng/timm/v21/i4/p30
|
Statistics & downloads: |
Abstract page: | 399 | Full-text PDF : | 110 | References: | 93 | First page: | 22 |
|