|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 1, Pages 241–244
(Mi timm1276)
|
|
|
|
Codimensions of varieties of Poisson algebras with Lie nilpotent commutants
S. M. Ratseeva, O. I. Cherevatenkob a Ulyanovsk State University, Faculty of Mathematics and Information Technologies
b Ul'yanovsk State Pedagogical University
Abstract:
We study varieties of Poisson algebras defined by the identities $\{x_1,x_2\}\cdot\{x_3,x_4\}=0$ and $\{\{x_1,x_2\},\ldots,\{x_{2s+1}, x_{2s+2}\}\}=0$, $s\geq 1$. For each of the varieties we find a carrier algebra and build a basis of the $n$th proper polylinear space. We derive exact formulas for exponential generating functions for sequences of codimensions and proper codimensions as well as exact formulas for codimensions and proper codimensions.
Keywords:
Poisson algebra, variety of algebras, growth of a variety.
Received: 17.01.2015
Citation:
S. M. Ratseev, O. I. Cherevatenko, “Codimensions of varieties of Poisson algebras with Lie nilpotent commutants”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 241–244
Linking options:
https://www.mathnet.ru/eng/timm1276 https://www.mathnet.ru/eng/timm/v22/i1/p241
|
Statistics & downloads: |
Abstract page: | 165 | Full-text PDF : | 44 | References: | 58 | First page: | 28 |
|