|
Новая интеллектуальная система для обнаружения сахарного диабета 2-го типа с модифицированной функцией потерь и регуляризацией
М. Г.К.a, А. Альсадунbacd, Д. Т. Х. Фамe, С. Х. Абдуллаf, Х. Т. Майe, П. В. Ч. Прасадa, Ч. К. В. Нгуенe a Университет Чарльза Стерта
b Азиатско-Тихоокеанский международный колледж
c Университет Западного Сиднея
d Университет Саутерн Кросс
e Университет Дананга – Университет науки и образования
f Иракский технический университет
Аннотация:
Сахарный диабет 2-го типа (СД2) составляет около 90% случаев диабета, и одним из ключевых аспектов СД2 являются жесткие требования к постоянному мониторингу и выявлению. Это исследование направлено на разработку ансамбля из нескольких моделей машинного и глубокого обучения для раннего обнаружения СД2 с высокой точностью. При большом разнообразии моделей ансамбль обеспечивает больше возможностей, чем отдельные модели. Предлагаемый ансамбль моделей основан на использовании известных моделей логистической регрессии, случайного леса, опорных векторов и глубокой нейронной сети. Выходные данные каждой модели в модифицированном ансамбле используются для определения окончательных выходных данных системы. Датасеты, используемые для этих моделей, включают Practice Fusion HER, Pima Indians diabetic's data, UCI AIM94 Dataset и CA Diabetes Prevalence 2014. По сравнению с ранее разработанными решениями, наше решение на основе ансамблевой модели демонстрирует высокие показатели точности, чувствительности и специфичности. В среднем обеспечиваются точность 87,5% от 83,51%, чувствительность 35,8% от 29,59% и специфичность 98,9% от 96,27%. Время работы предлагаемого решения составляет 96,6 мс, в то время как у наиболее по архитектуре известной системы – 97,5 мс. Предлагаемая усовершенствованная система улучшает возможности прогнозирования СД2 на основе использования ансамбля из нескольких моделей машинного и глубокого обучения. Для получения окончательного точного прогноза с использованием результатов отдельных моделей применяется схема мажоритарного голосования. В работе также изменена функция регуляризации, чтобы учесть регуляризацию всех моделей в ансамбле, что помогает предотвратить переобучение и поддержать возможность обобщений в предлагаемой системе.
Ключевые слова:
прогнозирование диабета 2-го типа, машинное обучение, ансамбль моделей, глубокие нейронные сети, метод опорных векторов, логистическая регрессия, случайный лес.
Образец цитирования:
М. Г.К., А. Альсадун, Д. Т. Х. Фам, С. Х. Абдулла, Х. Т. Май, П. В. Ч. Прасад, Ч. К. В. Нгуен, “Новая интеллектуальная система для обнаружения сахарного диабета 2-го типа с модифицированной функцией потерь и регуляризацией”, Труды ИСП РАН, 33:2 (2021), 93–114
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tisp587 https://www.mathnet.ru/rus/tisp/v33/i2/p93
|
Статистика просмотров: |
Страница аннотации: | 94 | PDF полного текста: | 68 | Список литературы: | 16 |
|