Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 249, Pages 3–239 (Mi tm28)  

This article is cited in 13 scientific papers (total in 15 papers)

Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings

D. V. Anosova, E. V. Zhuzhomab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Nizhny Novgorod State Technical University
References:
Abstract: This monograph is devoted to the properties of infinite (either in one direction or in both directions) curves without self-intersections on closed surfaces. The properties considered are those that are exhibited when the curves are lifted to the universal covering and are associated with the asymptotic behavior of the lifted curves at infinity; these properties mainly manifest themselves when the curves are compared with geodesics or with curves of constant geodesic curvature. The approach described can be applied to the trajectories of flows (which leads to a far-reaching generalization of the Poincaré rotation numbers) and to the leaves of foliations and laminations.
Bibliographic databases:
Document Type: Book
UDC: 517.9+513.8
Language: Russian
Citation: D. V. Anosov, E. V. Zhuzhoma, “Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings”, Trudy Mat. Inst. Steklova, 249, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 3–239; Proc. Steklov Inst. Math., 249 (2005), 1–221
Citation in format AMSBIB
\Bibitem{AnoZhu05}
\by D.~V.~Anosov, E.~V.~Zhuzhoma
\paper Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 249
\pages 3--239
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm28}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2200607}
\zmath{https://zbmath.org/?q=an:1126.37002|1121.37001}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 249
\pages 1--221
Linking options:
  • https://www.mathnet.ru/eng/tm28
  • https://www.mathnet.ru/eng/tm/v249/p3
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:698
    Full-text PDF :481
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024