Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 294, Pages 105–140
DOI: https://doi.org/10.1134/S0371968516030079
(Mi tm3736)
 

This article is cited in 4 scientific papers (total in 4 papers)

Plane rational quartics and K3 surfaces

Vik. S. Kulikov

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (462 kB) Citations (4)
References:
Abstract: We study actions of the symmetric group $\mathbb S_4$ on K3 surfaces $X$ that satisfy the following condition: there exists an equivariant birational contraction $\overline r\colon X\to\overline X$ to a K3 surface $\overline X$ with ADE singularities such that the quotient space $\overline X/\mathbb S_4$ is isomorphic to $\mathbb P^2$. We prove that up to smooth equivariant deformations there exist exactly 15 such actions of the group $\mathbb S_4$ on K3 surfaces, and that these actions are realized as actions of the Galois groups on the Galoisations $\overline X$ of the dualizing coverings of the plane which are associated with plane rational quartics without $A_4$, $A_6$, and $E_6$ singularities as their singular points.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: March 30, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 294, Pages 95–128
DOI: https://doi.org/10.1134/S0081543816060079
Bibliographic databases:
Document Type: Article
UDC: 512.77
Language: Russian
Citation: Vik. S. Kulikov, “Plane rational quartics and K3 surfaces”, Modern problems of mathematics, mechanics, and mathematical physics. II, Collected papers, Trudy Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 105–140; Proc. Steklov Inst. Math., 294 (2016), 95–128
Citation in format AMSBIB
\Bibitem{Kul16}
\by Vik.~S.~Kulikov
\paper Plane rational quartics and K3 surfaces
\inbook Modern problems of mathematics, mechanics, and mathematical physics.~II
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 294
\pages 105--140
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3736}
\crossref{https://doi.org/10.1134/S0371968516030079}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628496}
\elib{https://elibrary.ru/item.asp?id=26601054}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 294
\pages 95--128
\crossref{https://doi.org/10.1134/S0081543816060079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386554900007}
\elib{https://elibrary.ru/item.asp?id=27575391}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992109547}
Linking options:
  • https://www.mathnet.ru/eng/tm3736
  • https://doi.org/10.1134/S0371968516030079
  • https://www.mathnet.ru/eng/tm/v294/p105
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :55
    References:48
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024