Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 319, Pages 298–323
DOI: https://doi.org/10.4213/tm4291
(Mi tm4291)
 

This article is cited in 1 scientific paper (total in 1 paper)

Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content

A. I. Tyulenev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (331 kB) Citations (1)
References:
Abstract: Let $S\subset \mathbb R^n$ be a nonempty set. Given $d\in [0,n)$ and a cube $\overline {Q}\subset \mathbb R^n$ with side length $l=l(\overline {Q}) \in (0,1]$, we show that if the $d$-Hausdorff content $\mathcal H^d_{\infty }(\overline {Q}\cap S)$ of the set $\overline {Q}\cap S$ satisfies the inequality $\mathcal H^d_{\infty }(\overline {Q}\cap S)<\overline {\lambda }l^{d}$ for some $\overline {\lambda }\in (0,1)$, then the set $\overline {Q}\setminus S$ contains a specific cavity. More precisely, we prove the existence of a pseudometric $\rho =\rho _{S,d}$ such that for every sufficiently small $\delta >0$ the $\delta $-neighborhood $U^\rho _{\delta _{}}(S)$ of $S$ in the pseudometric $\rho $ does not cover $\overline {Q}$. Moreover, we establish the existence of constants $\overline {\delta }=\overline {\delta }(n,d,\overline {\lambda })>0$ and $\underline {\gamma }=\underline {\gamma }(n,d,\overline {\lambda })>0$ such that $\mathcal L^n(\overline {Q}\setminus U^{\rho }_{\delta l}(S)) \geq \underline {\gamma } l^n$ for all $\delta \in (0,\overline {\delta })$, where $\mathcal L^n$ is the Lebesgue measure. If in addition the set $S$ is lower content $d$-regular, we prove the existence of a constant $\underline {\tau }=\underline {\tau }(n,d,\overline {\lambda })>0$ such that the cube $\overline {Q}$ is $\underline {\tau }$-porous. The sharpness of the results is illustrated by several examples.
Keywords: porous sets, Hausdorff content, lower content $d$-regular sets.
Received: December 9, 2021
Revised: June 6, 2022
Accepted: June 22, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 319, Pages 283–306
DOI: https://doi.org/10.1134/S0081543822050194
Bibliographic databases:
Document Type: Article
UDC: 517.518.11
Language: Russian
Citation: A. I. Tyulenev, “Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content”, Approximation Theory, Functional Analysis, and Applications, Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin, Trudy Mat. Inst. Steklova, 319, Steklov Math. Inst., Moscow, 2022, 298–323; Proc. Steklov Inst. Math., 319 (2022), 283–306
Citation in format AMSBIB
\Bibitem{Tyu22}
\by A.~I.~Tyulenev
\paper Some Porosity-Type Properties of Sets Related to the $d$-Hausdorff Content
\inbook Approximation Theory, Functional Analysis, and Applications
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 319
\pages 298--323
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4291}
\crossref{https://doi.org/10.4213/tm4291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563398}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 319
\pages 283--306
\crossref{https://doi.org/10.1134/S0081543822050194}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139898468}
Linking options:
  • https://www.mathnet.ru/eng/tm4291
  • https://doi.org/10.4213/tm4291
  • https://www.mathnet.ru/eng/tm/v319/p298
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :33
    References:38
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025