Аннотация:
Анормальные траектории представляют особый интерес для субримановой геометрии, так как вблизи них субриманова метрика имеет наиболее сложные особенности. Важные открытые вопросы в субримановой геометрии — гладкость анормальных кратчайших и описание множества, заполненного анормальными траекториями, выходящими из фиксированной точки. Так, гипотеза Сарда в субримановой геометрии утверждает, что это множество имеет меру нуль. В данной работе рассматриваются это и другие родственные свойства указанного множества для левоинвариантной субримановой задачи с вектором роста $(2,3,5,8)$. Исследуется также глобальная и локальная оптимальность анормальных траекторий, получена их явная параметризация.
Образец цитирования:
Ю. Л. Сачков, Е. Ф. Сачкова, “Анормальные траектории в субримановой $(2,3,5,8)$-задаче”, Оптимальное управление и динамические системы, Сборник статей. К 95-летию академика Реваза Валериановича Гамкрелидзе, Труды МИАН, 321, МИАН, М., 2023, 252–285; Proc. Steklov Inst. Math., 321 (2023), 236–268