Abstract:
We consider an open qutrit system in which the evolution of the density matrix $\rho (t)$ is governed by the Gorini–Kossakowski–Sudarshan–Lindblad master equation with simultaneous coherent (in the Hamiltonian) and incoherent (in the dissipation superoperator) controls. To control the qutrit, we propose to use not only coherent control but also generally time-dependent decoherence rates which are adjusted by the so-called incoherent control. In our approach, the incoherent control makes the decoherence rates time-dependent in a specific controlled manner and within a clear physical mechanism. We consider the problem of maximizing the Hilbert–Schmidt overlap between the final state $\rho (T)$ of the system and a given target state $\rho _{\textup {target}}$, as well as the problem of minimizing the squared Hilbert–Schmidt distance between these states. For both problems, we perform their realifications, derive the corresponding Pontryagin functions, adjoint systems (with two variants of transversality conditions for the two terminal objectives), and gradients of the objectives, and adapt the one-, two-, and three-step gradient projection methods. For the problem of maximizing the overlap, we also adapt the regularized first-order Krotov method. In the numerical experiments, we analyze first the operation of the methods and second the obtained control processes, in respect of considering the environment as a resource via incoherent control.
This work was supported by the Russian Science Foundation under grant no. 22-11-00330, https://rscf.ru/en/project/22-11-00330/, and performed at the Steklov Mathematical Institute of Russian Academy of Sciences.
Citation:
Oleg V. Morzhin, Alexander N. Pechen, “Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System”, Noncommutative Analysis and Quantum Information Theory, Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 324, Steklov Math. Inst., Moscow, 2024, 162–178; Proc. Steklov Inst. Math., 324 (2024), 153–168
\Bibitem{MorPec24}
\by Oleg~V.~Morzhin, Alexander~N.~Pechen
\paper Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System
\inbook Noncommutative Analysis and Quantum Information Theory
\bookinfo Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 324
\pages 162--178
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4372}
\crossref{https://doi.org/10.4213/tm4372}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767956}
\zmath{https://zbmath.org/?q=an:07881434}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 324
\pages 153--168
\crossref{https://doi.org/10.1134/S0081543824010152}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198061157}