Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Volume 257, Pages 3–271 (Mi tm470)  

This article is cited in 148 scientific papers (total in 148 papers)

The Pontryagin Maximum Principle and Optimal Economic Growth Problems

S. M. Aseevab, A. V. Kryazhimskiiab

a Steklov Mathematical Institute, Russian Academy of Sciences
b International Institute for Applied Systems Analysis
References:
Abstract: This monograph is devoted to the theory of the Pontryagin maximum principle as applied to a special class of optimal control problems that arise in economics when studying economic growth processes. The first chapter presents a new approximation approach that leads to a complete set of necessary optimality conditions in the form of the Pontryagin maximum principle. The attention is focused on the characterization of the behavior of the adjoint variable and the Hamiltonian of a problem at infinity. In the second chapter, the approach proposed is applied to a problem of optimal dynamical allocation of labor resources in the endogenous economic growth theory.
The monograph is addressed to a wide circle of scientists, postgraduates, and students who are interested in the theory of the Pontryagin maximum principle and its applications in economics.
Received in February 2007
English version:
Proceedings of the Steklov Institute of Mathematics, 2007, Volume 257, Pages 1–255
DOI: https://doi.org/10.1134/S0081543807020010
Bibliographic databases:
Document Type: Book
UDC: 517.977.5+519.86
Language: Russian
Citation: S. M. Aseev, A. V. Kryazhimskii, “The Pontryagin Maximum Principle and Optimal Economic Growth Problems”, Trudy Mat. Inst. Steklova, 257, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 3–271; Proc. Steklov Inst. Math., 257 (2007), 1–255
Citation in format AMSBIB
\Bibitem{AseKry07}
\by S.~M.~Aseev, A.~V.~Kryazhimskii
\paper The Pontryagin Maximum Principle and Optimal Economic Growth Problems
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 257
\pages 3--271
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm470}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2378173}
\zmath{https://zbmath.org/?q=an:1215.49001}
\elib{https://elibrary.ru/item.asp?id=13543714}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 257
\pages 1--255
\crossref{https://doi.org/10.1134/S0081543807020010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547804663}
Linking options:
  • https://www.mathnet.ru/eng/tm470
  • https://www.mathnet.ru/eng/tm/v257/p3
  • This publication is cited in the following 148 articles:
    1. Shuo Li, Tahir Khan, Qasem M. Al-Mdallal, Fuad A. Awwad, Gul Zaman, “Dynamical analysis and numerical assessment of the 2019-nCoV virus transmission with optimal control”, Sci Rep, 15:1 (2025)  crossref
    2. Saida Id Ouaziz, Mohammed El Khomssi, “Mathematical approaches to controlling COVID-19: optimal control and financial benefits”, Mathematical Modelling and Numerical Simulation with Applications, 4:1 (2024), 1  crossref
    3. M. Montaz Ali, Nouralden Mohammed, “Optimal sizing of hybrid renewable energy systems using quasi-optimal control”, Renewable Energy, 226 (2024), 120351  crossref
    4. Yasir Nadeem Anjam, Iqra Shahid, Homan Emadifar, Salman Arif Cheema, Mati ur Rahman, “Dynamics of the optimality control of transmission of infectious disease: a sensitivity analysis”, Sci Rep, 14:1 (2024)  crossref
    5. Alexander M. Tarasyev, Anastasiia A. Usova, Alexander A. Tarassiev, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022, 3094, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022, 2024, 480001  crossref
    6. A. S. Aseev, S. P. Samsonov, “On the problem of optimal stimulation of demand”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S33–S47  mathnet  crossref  crossref  elib
    7. Othman Cherkaoui-Dekkaki, Walid Djema, Nadia Raissi, Jean-Luc Gouzé, Noha El Khattabi, “Optimal control of waste recovery process”, Int. J. Dynam. Control, 2024  crossref
    8. A. A. Davydov, A. S. Platov, D. V. Tunitskii, “Suschestvovanie optimalnogo statsionarnogo resheniya v KPP-modeli pri nelokalnoi konkurentsii”, Tr. IMM UrO RAN, 30, no. 3, 2024, 113–121  mathnet  crossref  elib
    9. D. V. Khlopin, “Ob odnoi sopryazhennoi traektorii v zadachakh upravleniya na beskonechnom promezhutke”, Tr. IMM UrO RAN, 30, no. 3, 2024, 274–292  mathnet  crossref  elib
    10. G. S. Parastaev, A. A. Shananin, “Ramsey's Conjecture of Social Stratification as Fisher's Selection Principle”, Comput. Math. and Math. Phys., 64:12 (2024), 2952  crossref
    11. D. V. Khlopin, “On One Adjoint Trajectory in Infinite-Horizon Control Problems”, Proc. Steklov Inst. Math., 327:S1 (2024), S155  crossref
    12. A. A. Davydov, A. S. Platov, D. V. Tunitsky, “Existence of an Optimal Stationary Solution in the KPP Model under Nonlocal Competition”, Proc. Steklov Inst. Math., 327:S1 (2024), S66  crossref
    13. Yueyang Zheng, Jingtao Shi, “The maximum principle for discounted optimal control of partially observed forward-backward stochastic systems with jumps on infinite horizon”, ESAIM: COCV, 29 (2023), 34  crossref
    14. Dmitry Khlopin, “Necessary Conditions in Infinite-Horizon Control Problems that Need no Asymptotic Assumptions”, Set-Valued Var. Anal, 31:1 (2023)  crossref
    15. Dmitry Khlopin, Dmitry Gromov, “On the optimal harvesting strategy for a generalized population model”, Optim Control Appl Methods, 44:4 (2023), 1917  crossref
    16. S. M. Aseev, “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11:18 (2023), 3851  mathnet  crossref  isi
    17. Víctor Ayala, Adriano Da Silva, Erik Mamani, “Control Sets of Linear Control Systems on ℝ2. The Complex Case”, ESAIM: COCV, 29 (2023), 69  crossref
    18. Thorsten Upmann, Dmitry Gromov, “The structure of optimal solutions for harvesting a renewable resource”, Natural Resource Modeling, 36:1 (2023)  crossref
    19. S. M. Aseev, “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci. (N.Y.), 270:4 (2023), 531–546  mathnet  crossref
    20. Bibi Fatima, Mehmet Yavuz, Mati ur Rahman, Ali Althobaiti, Saad Althobaiti, “Predictive Modeling and Control Strategies for the Transmission of Middle East Respiratory Syndrome Coronavirus”, MCA, 28:5 (2023), 98  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:6745
    Full-text PDF :6311
    References:249
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025