Abstract:
This monograph is devoted to the theory of the Pontryagin maximum principle as applied to a special class of optimal control problems that arise in economics when studying economic growth processes. The first chapter presents a new approximation approach that leads to a complete set of necessary optimality conditions in the form of the Pontryagin maximum principle. The attention is focused on the characterization of the behavior of the adjoint variable and the Hamiltonian of a problem at infinity. In the second chapter, the approach proposed is applied to a problem of optimal dynamical allocation of labor resources in the endogenous economic growth theory.
The monograph is addressed to a wide circle of scientists, postgraduates, and students who are interested in the theory of the Pontryagin maximum principle and its applications in economics.
Citation:
S. M. Aseev, A. V. Kryazhimskii, “The Pontryagin Maximum Principle and Optimal Economic Growth Problems”, Trudy Mat. Inst. Steklova, 257, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 3–271; Proc. Steklov Inst. Math., 257 (2007), 1–255
\Bibitem{AseKry07}
\by S.~M.~Aseev, A.~V.~Kryazhimskii
\paper The Pontryagin Maximum Principle and Optimal Economic Growth Problems
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 257
\pages 3--271
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm470}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2378173}
\zmath{https://zbmath.org/?q=an:1215.49001}
\elib{https://elibrary.ru/item.asp?id=13543714}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 257
\pages 1--255
\crossref{https://doi.org/10.1134/S0081543807020010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547804663}
Linking options:
https://www.mathnet.ru/eng/tm470
https://www.mathnet.ru/eng/tm/v257/p3
This publication is cited in the following 148 articles:
Shuo Li, Tahir Khan, Qasem M. Al-Mdallal, Fuad A. Awwad, Gul Zaman, “Dynamical analysis and numerical assessment of the 2019-nCoV virus transmission with optimal control”, Sci Rep, 15:1 (2025)
Saida Id Ouaziz, Mohammed El Khomssi, “Mathematical approaches to controlling COVID-19: optimal control and financial benefits”, Mathematical Modelling and Numerical Simulation with Applications, 4:1 (2024), 1
M. Montaz Ali, Nouralden Mohammed, “Optimal sizing of hybrid renewable energy systems using quasi-optimal control”, Renewable Energy, 226 (2024), 120351
Yasir Nadeem Anjam, Iqra Shahid, Homan Emadifar, Salman Arif Cheema, Mati ur Rahman, “Dynamics of the optimality control of transmission of infectious disease: a sensitivity analysis”, Sci Rep, 14:1 (2024)
Alexander M. Tarasyev, Anastasiia A. Usova, Alexander A. Tarassiev, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022, 3094, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022, 2024, 480001
A. S. Aseev, S. P. Samsonov, “On the problem of optimal stimulation of demand”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S33–S47
Othman Cherkaoui-Dekkaki, Walid Djema, Nadia Raissi, Jean-Luc Gouzé, Noha El Khattabi, “Optimal control of waste recovery process”, Int. J. Dynam. Control, 2024
A. A. Davydov, A. S. Platov, D. V. Tunitskii, “Suschestvovanie optimalnogo statsionarnogo resheniya v KPP-modeli pri nelokalnoi konkurentsii”, Tr. IMM UrO RAN, 30, no. 3, 2024, 113–121
D. V. Khlopin, “Ob odnoi sopryazhennoi traektorii v zadachakh upravleniya na beskonechnom promezhutke”, Tr. IMM UrO RAN, 30, no. 3, 2024, 274–292
G. S. Parastaev, A. A. Shananin, “Ramsey's Conjecture of Social Stratification as Fisher's Selection Principle”, Comput. Math. and Math. Phys., 64:12 (2024), 2952
D. V. Khlopin, “On One Adjoint Trajectory in Infinite-Horizon Control Problems”, Proc. Steklov Inst. Math., 327:S1 (2024), S155
A. A. Davydov, A. S. Platov, D. V. Tunitsky, “Existence of an Optimal Stationary Solution in the KPP Model under Nonlocal Competition”, Proc. Steklov Inst. Math., 327:S1 (2024), S66
Yueyang Zheng, Jingtao Shi, “The maximum principle for discounted optimal control of partially observed forward-backward stochastic systems with jumps on infinite horizon”, ESAIM: COCV, 29 (2023), 34
Dmitry Khlopin, “Necessary Conditions in Infinite-Horizon Control Problems that Need no Asymptotic Assumptions”, Set-Valued Var. Anal, 31:1 (2023)
Dmitry Khlopin, Dmitry Gromov, “On the optimal harvesting strategy for a generalized population model”, Optim Control Appl Methods, 44:4 (2023), 1917
S. M. Aseev, “Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems”, Mathematics, 11:18 (2023), 3851
Víctor Ayala, Adriano Da Silva, Erik Mamani, “Control Sets of Linear Control Systems on ℝ2. The Complex Case”, ESAIM: COCV, 29 (2023), 69
Thorsten Upmann, Dmitry Gromov, “The structure of optimal solutions for harvesting a renewable resource”, Natural Resource Modeling, 36:1 (2023)
S. M. Aseev, “The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions”, J. Math. Sci. (N.Y.), 270:4 (2023), 531–546
Bibi Fatima, Mehmet Yavuz, Mati ur Rahman, Ali Althobaiti, Saad Althobaiti, “Predictive Modeling and Control Strategies for the Transmission of Middle East Respiratory Syndrome Coronavirus”, MCA, 28:5 (2023), 98