Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 211, Number 1, Pages 121–135
DOI: https://doi.org/10.4213/tmf10195
(Mi tmf10195)
 

Quantum adiabatic theorem with energy gap regularization

N. B. Ilyin

Skolkovo Institute of Science and Technology, Moscow, Skolkovo, Russia
References:
Abstract: The dynamics of a nonstationary quantum system whose Hamiltonian explicitly depends on time is called adiabatic if a system state that is an eigenstate of the Hamiltonian at the initial instant of time remains close to this eigenstate throughout the evolution. The degree of such closeness depends on the smallness of the parameter that determines the rate of change of the Hamiltonian. It is usually believed that one of the factors playing a decisive role for the stability of the adiabatic dynamics is the structure of the spectrum of the Hamiltonian. As the quantum adiabatic theorem states in its usual formulation, deviations from the adiabatic evolution can be estimated from above by the ratio of the rate of change of the Hamiltonian to the minimum distance between the energy of the state that approximates the adiabatic dynamics and the rest of the spectrum of the Hamiltonian. We analyze this dependence and prove theorems showing that the efficiency of the adiabatic approximation is more influenced by the rate of change of the Hamiltonian eigenvectors than by the dynamics of the spectrum. In a vast majority of physically meaningful cases, it turns out that controlling the dynamics of eigenvectors is sufficient for ensuring the adiabaticity, regardless of the dynamics of the spectrum as such.
Keywords: quantum adiabatic theorem, energy gap, gauge adiabatic potential.
Funding agency Grant number
Russian Science Foundation 17-71-20158
This paper was supported by the Russian Science Foundation grant No. 17-71-20158.
Received: 04.11.2021
Revised: 25.01.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 211, Issue 1, Pages 545–557
DOI: https://doi.org/10.1134/S0040577922040080
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. B. Ilyin, “Quantum adiabatic theorem with energy gap regularization”, TMF, 211:1 (2022), 121–135; Theoret. and Math. Phys., 211:1 (2022), 545–557
Citation in format AMSBIB
\Bibitem{Ili22}
\by N.~B.~Ilyin
\paper Quantum adiabatic theorem with energy gap regularization
\jour TMF
\yr 2022
\vol 211
\issue 1
\pages 121--135
\mathnet{http://mi.mathnet.ru/tmf10195}
\crossref{https://doi.org/10.4213/tmf10195}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461517}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...211..545I}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 211
\issue 1
\pages 545--557
\crossref{https://doi.org/10.1134/S0040577922040080}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128947654}
Linking options:
  • https://www.mathnet.ru/eng/tmf10195
  • https://doi.org/10.4213/tmf10195
  • https://www.mathnet.ru/eng/tmf/v211/i1/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :60
    References:80
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025