Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2025, Volume 223, Number 2, Pages 358–384
DOI: https://doi.org/10.4213/tmf10875
(Mi tmf10875)
 

Debye mass in the accelerating frame

D. V. Diakonovab, K. V. Bazarovac

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
c National Research Center "Kurchatov Institute", Moscow, Russia
References:
Abstract: We consider a conformal scalar field theory with the $\lambda \phi^4$ self-coupling in Rindler and Minkowski coordinates at a finite-temperature with the Planckian distribution for exact modes. The solution of the one-loop Dyson–Schwinger equation is found through the order $\lambda^{3/2}$. The appearance of a thermal (Debye) mass is shown. Unlike the physical mass, the thermal mass gives a gap in the energy spectrum in the quantization in the Rindler coordinates. The difference between such calculations in Minkowski and Rindler coordinates for exact modes is discussed. It is also shown that states with a temperature lower than the Unruh temperature are unstable. It is proved that for the canonical Unruh temperature, the thermal mass is equal to zero. The contribution to the quantum average of the stress–energy tensor is also calculated, it remains traceless even in the presence of the thermal mass.
Keywords: Debye mass, Rindler coordinates.
Funding agency Grant number
Foundation for the Development of Theoretical Physics and Mathematics BASIS
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-287
This study was supported by a grant from the “BASIS” Foundation for Advancement of Theoretical Physics and Mathematics and by the Euler grant from the Saint Petersburg Leonhard Euler International Mathematical Institute, and it received support from the Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2022-287). Work of D. V. Diakonov was partially funded within the state assignment of the Institute for Information Transmission Problems, Russian Academy of Sciences.
Received: 20.12.2024
Revised: 12.02.2025
Published: 01.05.2025
English version:
Theoretical and Mathematical Physics, 2025, Volume 223, Issue 2, Pages 839–862
DOI: https://doi.org/10.1134/S0040577925050095
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Diakonov, K. V. Bazarov, “Debye mass in the accelerating frame”, TMF, 223:2 (2025), 358–384; Theoret. and Math. Phys., 223:2 (2025), 839–862
Citation in format AMSBIB
\Bibitem{DyaBaz25}
\by D.~V.~Diakonov, K.~V.~Bazarov
\paper Debye mass in the~accelerating frame
\jour TMF
\yr 2025
\vol 223
\issue 2
\pages 358--384
\mathnet{http://mi.mathnet.ru/tmf10875}
\crossref{https://doi.org/10.4213/tmf10875}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4910208}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025TMP...223..839D}
\transl
\jour Theoret. and Math. Phys.
\yr 2025
\vol 223
\issue 2
\pages 839--862
\crossref{https://doi.org/10.1134/S0040577925050095}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105006409220}
Linking options:
  • https://www.mathnet.ru/eng/tmf10875
  • https://doi.org/10.4213/tmf10875
  • https://www.mathnet.ru/eng/tmf/v223/i2/p358
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :1
    References:37
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025